98. Studies on the Base-Pairing Properties of N^{7}-(2-Deoxy- β-D-erythro-pentofuranosyl)guanine ($N^{7} \mathbf{G}_{\mathrm{d}}$)
by Frank Seela* and Peter Leonard
Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastrasse 7, D-49069 Osnabrück

Dedicated to Prof. W. Pfleiderer on the occasion of his 70th birthday
(10.III.97)

Abstract

The base-pairing properties of N^{7}-(2-deoxy- β-D-erythro-pentofuranosyl)guanine ($N^{7} \mathrm{G}_{d} ; 1$) are investigated. The nucleoside 1 was obtained by nucleobase-anion glycosylation. The glycosylation reaction of various 6 -alkoxy-purin-2-amines 3a-i with 2-deoxy-3,5-di-O-(4-toluoyl)- α-D-erythro-pentofuranosyl chloride (8) was studied. The N^{9} / N^{7}-glycosylation ratio was found to be $1: 1$ when 6 -isopropoxypurin-2-amine (3d) was used, whereas 6-(2-methoxyethoxy)purin-2-amine (3i) gave mainly the N^{9}-nucleoside ($2: 1$). Oligonucleotides containing compound 1 were prepared by solid-phase synthesis and hybridized with complementary strands having the four conventional nucleosides located opposite to $N^{7} \mathrm{G}_{\mathrm{d}}$. According to T_{m} values and enthalpy data of duplex formation, a base pair between $N^{7} \mathrm{G}_{\mathrm{d}}$ and dG is suggested. From the possible $N^{7} \mathrm{G}_{\mathrm{d}} \cdot \mathrm{dG}$ base pair motives, Hoogsteen pairing can be excluded as 7 -deaza- 2^{\prime}-deoxyguanosine forms the same stable base pair with $N^{7} \mathrm{G}_{\mathrm{d}}$ as dG .

Introduction. - The duplex formation of nucleobases with an unusually linked sugar moiety can lead to new base-pairing modes and eventually to new DNA structures. In 1988, it was shown by our laboratory that N^{8}-linked 8-aza-7-deazapurine nucleosides form base pairs with regularly linked pyrimidine nucleosides [1]. This work was later extended to N^{7}-linked purine nucleosides. The base pairing of N^{7}-(2 -deoxy- β-D-erythropentofuranosyl)adenine with dT within an oligonucleotide duplex was the first report on the duplex formation of an N^{7}-oligonucleotide [2-4]. Later, another unusually linked nucleoside (P1) was incorporated into the third strand of a triplex DNA [5]. Previously, the N^{7}-(2-deoxy- β-D-erythro-pentofuranosyl)guanine ($N^{7} \mathrm{G}_{\mathrm{d}} ; \mathbf{1}$) was shown to form a duplex of considerable stability when introduced in an alternating self-complementary $N^{7} \mathrm{G}_{\mathrm{d}}-\mathrm{dC}$ sequence [6]. Also, triplex formation of oligonucleotides containing $N^{7} \mathrm{G}_{\mathrm{d}}(\mathbf{1})$ was reported [7] [8].

The glycosylation of guanine at position 7 (see 1) does not change the overall donor-acceptor pattern of the base compared to 2^{\prime}-deoxyguanosine (2) (see I vs. II). However, different atoms are contributing to the pairing mode altering the steric requirements of the base pair. Also the Hoogsteen site does not exist in compound 1 impairing this type of base pairing. On the other hand, the nucleoside 1 has a new base-pairing region ($\mathrm{NH}_{2}, \mathrm{~N}(3), \mathrm{N}(9)$). Consequently, new base-pairing modes can be expected, and unusual DNA structures can be realized. This communication reports on the incorporation of $N^{7} \mathrm{G}_{\mathrm{d}}(1)$ residues into various positions of oligonucleotide duplexes. Their stability is investigated and compared with the non-

1

1

2

II

modified duplex structures. From this work, evidence of new base-pair motives is given.

Results and Discussion. - Monomers. Earlier, it has been observed that N^{9}-substituted purines are the main products formed during the nucleobase-anion glycosylation of purines with 2 -deoxy-3,5-di-O-(4-toluoyl- α-D-erythro-pentofuranosyl)chloride (8) [9]. The N^{7}-isomers are usually obtained as minor components. Nevertheless, it was found that the isomer ratio can be shifted towards the minor isomer when 6 -methoxypurine instead of 6 -chloropurine was used [10]. A similar observation was made during the synthesis of N^{7}-(2-deoxy-erythro-pentofuranosyl)guanine 1 [6]. Whereas the yield of the N^{7}-isomer was only 16% when the glycosylation was performed on 6 -chloropurin-2amine [11] [12], it was increased to 24% when 6 -methoxypurin-2-amine was used [6] [13]. As we wanted to increase the yield of the N^{7}-isomer further, we undertook a comparative study of the glycosylation reaction using various 6 -alkoxypurin- 2 -amines.

In all cases, the starting 6-alkoxypurin-2-amines 3a-i were obtained from 6-chloro-purin-2-amine [12] which was treated with the corresponding sodium alkoxide. Normally, the alkoxy derivatives were sufficiently pure after crystallization. Compounds 3a-e and $3 \mathbf{i}$ have been prepared earlier [13] [14]. Compounds $\mathbf{3 f - h}$ are new. The glycosylation was carried out at room temperature as described using $\mathrm{MeCN} /$ powdered KOH and TDA-1 as catalyst [15] [16] (Scheme 1). The glycosylation products 4 and 5 were separated by flash chromatography. Table 1 summarizes the results of this study. It is obvious that alkoxy derivatives with very short and very long alkyl chains change the ratio in favor of the N^{9}-isomer 4. The yield of the N^{9}-product was particularly high when the 2-methoxyethoxy compound $\mathbf{3 i}$ was used. This result is similar to alkylation experiments performed on compound $\mathbf{3 i}$ [17]. We obtained the highest yield of the N^{7}-isomer 5 when 6 -ethoxypurin-2-amine (3b) or 6-isopropoxypurin-2-amine (3d) were used in the glycosylation reaction.

The isomers $\mathbf{4 a - i}$ and $\mathbf{5 a - i}$ were deprotected with $\mathrm{NaOMe} / \mathrm{MeOH}$ to give the nucleosides $6 \mathbf{a}-\mathbf{i}$ and $7 \mathbf{7 a - i}$. Then compound $7 \mathbf{d}$ was treated with 2 N NaOH giving N^{7}-(2-de-oxy-erythro-pentofuranosyl)guanine 1 in 82% yield [6]. The N^{9}-isomers $6 \mathbf{a}-\mathbf{e}$ have already been prepared by another route starting from 2^{\prime}-deoxyguanosine [18-20]. In the

Table 1. Yields and Ratios of Regioisomers of the Glycosylation of 6-Alkoxypurin-2-amines $\mathbf{3}^{\text {a }}$)

	N^{9}-Isomer 4 [\%]	N^{7}-Isomer 5 [\%]	$4 / 5\left(N^{9} / N^{7}\right)$	Yield [\%]
3a [6]	48	24	2.0	72
b	37	30	1.2	67
c	43	28	1.5	71
d	36	35	1.0	71
e	39	30	1.3	69
f	37	32	1.2	69
g	38	29	1.3	67
h	40	28	1.4	68
i	55	30	1.8	85

${ }^{\text {a }}$) Determined after flash column chromatography.
case of bulky alkoxy substituents, the reaction time for the displacement reaction was significantly longer than it was found for the MeO compound 7a. Nevertheless, the final yield obtained after displacement was the same. Other synthetic routes described for the synthesis of isobutyryl-protected $\mathbf{1}$ are more laborious and give a lower yield [8] [21].

The glycosylic-bond stability of $\mathbf{6 a}$ and 7 a as well as of $\mathbf{6 d}$ and $7 \mathbf{d}$ was determined by exposure to HCl solution followed by HPLC analysis. The N^{7}-nucleosides $7 \mathbf{a}$ and $7 \mathbf{d}$ $\left(0.5 \mathrm{~N} \mathrm{HCl}, 25^{\circ} ; \operatorname{HPLC}(280 \mathrm{~nm}): t_{1 / 2} 15\right.$ and 27 min$)$ were found to be more stable as their N^{9}-counterparts $6 \mathbf{a}$ and $\mathbf{6 d}\left(0.1 \mathrm{~N} \mathrm{HCl}, 25^{\circ}\right.$; $\operatorname{HPLC}(280 \mathrm{~nm}): t_{1 / 2} 13$ and 11 min$)$ [4] [6]. The O^{6}-alkyl residues were not hydrolyzed under these conditions. The higher glycosylicbond stability of the N^{7}-nucleosides $7 \mathbf{a}$ and $\mathbf{7 d}$ is in agreement with results reported for $N^{7} \mathrm{G}_{\mathrm{d}}$ (1) compared to dG (2) [6].

Earlier, the phosphoramidite 12 has been prepared [6]. Now, the phosphoramidite 11 was synthesized from nucleoside $7 \mathbf{a}$ which was treated with dimethylformamide dimethyl acetal to give the (dimethylamino) methylidene derivative, together with the formyl compound 9 (Scheme 2). The formation of formyl derivatives from amidines was already reported in the case of 6-methoxy-7-deazapurin-2-amine 2^{\prime}-deoxyribofuranoside [22]. It was necessary to complete the transformation of the (dimethylamino)methylidene derivative to 9 by treatment of the reaction mixture with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ at 50°. The half-life value of the deformylation of 9 was determined UV-spectrophotometrically at 275 nm (25% aqueous NH_{3} solution at 40°). The half-life (35 min) was short enough to avoid displacement of the 6-methoxy group by ammonia. This reaction was observed in the case of the N^{9}-nucleoside which carries an isobutyryl protecting group [20]. Compound 9 was protected at the $5^{\prime}-\mathrm{OH}$ group with $4,4^{\prime}$-dimethoxytrityl chloride to give derivative 10. The phosphoramidite 11 was prepared by treatment of 10 with chloro(2 -cyanoethoxy)(diisopropylamino)phosphine in the presence of diisopropyl(ethyl)amine.

Scheme 2

$7 a$

11

12

Table 2 shows the ${ }^{13} \mathrm{C}$-NMR chemical shifts of the monomers 3-7,9, and $\mathbf{1 0}$. Some ${ }^{13} \mathrm{C}$-NMR data of the N^{9}-isomers $6 \mathbf{b}, \mathbf{c}$ have been published earlier [19]. However, in these cases, the assignment of $\mathrm{C}\left(1^{\prime}\right)$ and $\mathrm{C}\left(4^{\prime}\right)$ had to be reversed according to our data. Our attributions were based on the observation that the coupling constant ${ }^{1} J(\mathrm{C}, \mathrm{H})$ of $\mathrm{C}\left(1^{\prime}\right)$ is larger $(162-168 \mathrm{~Hz})$ than that of $\mathrm{C}\left(4^{\prime}\right)(148-153 \mathrm{~Hz})$ (see Table 3) [23]. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data of the alkoxy derivatives followed that of the methoxy compound [6]. The assignment of the $\mathrm{C}(2)$ and $\mathrm{C}(4)$ signals was made on the basis of $\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right]$ gated-decoupled spectra. The anomeric configuration of the sugar moiety was confirmed by ${ }^{1} \mathrm{H}$-NOE data and found to be β-D in all cases. Furthermore, the syn/anti-population of N -glycosylic bond can be determined by a calibration graph described earlier [24]. The N^{9} / N^{7}-guanine isomers 1 and 2 show a similar population of syn/anti-conformers (Table 4). In the case of the alkylated N^{7}-nucleosides $7 \mathbf{7 a}-\mathbf{d}$, it is

Table 2. ${ }^{13} \mathrm{C}$-NMR Chemical Shifts of Purine 2'-Deaxyribanucleosides $\left.\left.{ }^{\mathbf{a}}\right)^{\mathbf{b}}\right)^{\mathbf{c}} \mathbf{)}^{\text {(}}$)

	C(2) ${ }^{\text {d }}$)	C(4)	C(5)	C(6) ${ }^{\text {d }}$)	C(8)	CHO		$\mathrm{C}\left(1^{\prime}\right)$	C(2')	$\mathrm{C}\left(3^{\prime}\right)$	$\mathrm{C}\left(4^{\prime}\right)$	C(5^{\prime})	$\mathrm{C}=\mathrm{O}$
3 c	159.6	156.0	112.8	160.0	138.4	66.9	4b	83.2	35.5	75.7	81.5	64.2	
f	159.7	155.0	113.5	160.3	137.5	71.5	c	83.2	35.5	75.3	81.5	64.2	
g	159.7	155.1	113.6	159.8	137.6	65.4	d	83.1	35.4	75.1	81.4	64.1	
h	159.7	155.0	113.5	160.6	137.4	74.7	e	83.1	35.5	75.1	81.5	64.1	
4b	159.9	153.9	114.2	160.5	137.7	61.7	f	83.1	35.5	75.1	81.5	64.1	
c	160.0	154.0	114.2	160.7	137.7	67.3	g	83.1	35.4	75.1	81.4	64.1	
d	159.8	153.9	114.3	160.0	137.4	68.3	h	83.0	35.5	75.1	81.4	64.1	
e	159.8	153.9	114.1	160.7	137.5	71.7	i	83.1	35.4	75.1	81.5	64.1	
f	159.8	153.9	114.1	160.6	137.5	71.7	5b	86.0	37.2	75.7	81.4	64.3	
g	159.8	153.8	114.1	160.5	137.5	65.7	c	86.0	37.2	74.8	81.5	64.0	
h	159.8	153.9	114.0	160.9	137.5	75.1	d	86.1	38.0	74.7	81.4	64.3	
i	159.7	154.0	114.0	160.3	137.7	70.0	e	86.0	37.5	74.9	81.6	64.1	
5b	159.9	164.0	104.9	156.5	143.5	62.0	f	85.9	37.4	75.0	81.7	64.1	
c	159.8	164.0	105.0	156.5	142.7	67.3	g	86.0	37.5	74.8	81.6	64.1	
d	160.0	164.3	105.0	156.1	143.1	69.1	h	85.9	37.1	75.2	82.0	64.1	
e	159.8	164.0	105.0	156.5	142.7	65.5	i	86.2	37.7	74.7	81.4	64.2	
f	159.8	163.8	105.1	156.6	142.2	71.8	6b	82.9	${ }^{\text {c }}$)	70.8	87.6	61.6	
g	159.8	164.0	105.0	156.5	142.7	65.8	c	82.8	${ }^{\text {c }}$)	70.8	87.6	61.2	
h	159.9	163.7	105.3	156.8	141.9	75.2	d	82.8	${ }^{\text {c }}$)	70.8	87.6	61.2	
i	159.7	164.5	104.6	156.2	143.8	69.8	e	82.8	${ }^{\text {c }}$)	70.8	87.6	61.7	
6b	159.8	153.8	114.0	160.4	137.7	61.8	f	82.8	37.4	70.7	87.6	61.7	
c	159.7	153.8	114.0	160.5	137.6	67.1	g	82.8	${ }^{\text {e }}$)	70.8	87.6	61.8	
d	159.7	153.8	114.1	159.9	137.5	70.8	h	82.8	${ }^{\text {c }}$)	70.8	87.6	61.7	
e	159.7	153.8	114.0	159.7	137.6	65.3	i	82.8	${ }^{\text {e }}$)	70.8	87.6	64.6	
f	159.7	153.9	114.1	160.6	137.6	71.7	7b	86.0	41.1	70.1	87.7	61.3	
g	159.7	153.8	114.0	160.5	137.6	65.7	c	86.0	41.1	69.9	87.6	61.2	
h	159.7	153.8	113.9	160.8	137.6	74.9	d	86.2	41.5	69.9	87.7	61.2	
i	159.6	153.9	113.9	160.2	137.7	70.0	e	86.0	41.1	69.9	87.6	61.2	
7b	159.8	164.0	105.0	156.5	143.0	61.8	f	86.0	41.1	69.8	87.6	61.1	
c	159.7	163.9	105.0	156.5	143.0	67.2	g	85.9	41.0	69.9	87.6	61.2	
d	159.8	164.1	105.1	156.2	142.8	68.8	h	85.9	41.0	69.8	87.6	61.0	
e	159.6	163.9	105.0	156.6	142.7	65.4	i	86.1	41.1	70.0	87.7	61.2	
f	159.6	163.8	105.0	156.7	142.5	71.7	9	86.2	40.9	70.1	87.9	61.2	163.5
g	159.6	163.8	105.0	156.5	142.7	65.6	10	85.4	${ }^{\text {c }}$)	70.2	85.9	64.0	163.2
h	159.6	163.7	105.0	156.9	142.3	75.1							
i	159.6	164.1	104.9	156.4	143.1	70.0							
9	152.2	162.4	108.7	156.9	145.0	54.3							
10	152.3	162.7	108.6	156.9	144.8	54.5							

[^0]obvious that with a more bulky alkoxy substituent, a rise of the anti-population is observed. This is not the case for the N^{9}-nucleosides $\mathbf{6 c}, \mathbf{d}, \mathbf{h}$. Steric and stereoelectronic effects are influencing also the sugar conformation. The N -conformer population of the sugar moiety is increased in the case of the N^{7}-nucleosides $\mathbf{1}$ and 7 a compared to 2^{\prime}-deoxyguanosine (2) (see Table 5). The data were obtained by PSEUROT 6.0 measurements [25].

Table 3. J(C,H) Coupling Constants [Hz] of Purine 2'-Deoxyribonucleosides $\left.{ }^{\mathbf{a}}\right)^{\text {b }}$)

	$\mathbf{4 f}$	$\mathbf{4 i}$	$\mathbf{5 f}$	$\mathbf{5 g}$	$\mathbf{5 i}$	$\mathbf{6 c}$	$\mathbf{6 d}$	$7 \mathbf{c}$	$\mathbf{7 d}$	$\mathbf{9}$
$J(\mathrm{C}(4), H-\mathrm{C}(8))$	m	m	12.9	12.8	12.8	m	m	12.8	13.0	13.0
$J\left(\mathrm{C}(4), H-\mathrm{C}\left(1^{\prime}\right)\right)$	m	m	-	-	-	m	m	-	-	-
$J(\mathrm{C}(5), H-\mathrm{C}(8))$	11.8	11.8	4.1	m	3.0	11.8	11.8	4.0	4.4	3.7
$J(\mathrm{C}(8), H-\mathrm{C}(8))$	213	213	211	210	211	213	213	211	211	213
$J\left(\mathrm{C}(8), H-\mathrm{C}\left(1^{\prime}\right)\right)$	3.7	3.7	4.5	3.6	3.6	4.4	4.4	4.0	4.0	3.8
$J\left(\mathrm{C}\left(1^{\prime}\right), H-\mathrm{C}\left(1^{\prime}\right)\right)$	165	166	168	168	162	167	164	168	168	168
$J\left(\mathrm{C}\left(2^{\prime}\right), H-\mathrm{C}\left(2^{\prime}\right)\right)$	139	134	138	134	135	-	-	-	-	-
$J\left(\mathrm{C}\left(3^{\prime}\right), H-\mathrm{C}\left(3^{\prime}\right)\right)$	160	159	160	158	160	146	150	148	150	150
$J\left(\mathrm{C}\left(4^{\prime}\right) H-\mathrm{C}\left(4^{\prime}\right)\right)$	153	153	143	152	153	149	149	148	148	148
$J\left(\mathrm{C}\left(5^{\prime}\right), H-\mathrm{C}\left(5^{\prime}\right)\right)$	149	141	150	148	141	140	140	140	140	140
$J\left(\mathrm{OCH} \mathrm{O}_{2}\right)$	148	148	149	149	141	149	149	142	145	-
$J(C \mathrm{CH}, \mathrm{N}-H)$	-	-	-	-	-	-	-	-	-	201

[^1]Table 4. ${ }^{1} H$-NOE Data [\%] of Alkoxypurin-2-amine 2'-Deoxyribofuranosides $\left.{ }^{\mathbf{a}}\right)^{\mathbf{b}}$)

	Irradiated proton	NOE [\%]
1	$\begin{aligned} & \mathrm{H}-\mathrm{C}\left(1^{\prime}\right) \\ & \mathrm{H}-\mathrm{C}(8) \end{aligned}$	$\begin{aligned} & \mathrm{H}_{a}-\mathrm{C}\left(2^{\prime}\right)(5.3) ; \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)(1.6) ; \mathrm{H}-\mathrm{C}(8)(3.7) \\ & \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)(3.4) ; \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)(1.1) \end{aligned}$
2 [24]	$\begin{aligned} & \mathrm{H}-\mathrm{C}\left(1^{\prime}\right) \\ & \mathrm{H}-\mathrm{C}(8) \end{aligned}$	$\begin{aligned} & \mathrm{H}_{a}-\mathrm{C}\left(2^{\prime}\right)(5.6) ; \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)(1.6) ; \mathrm{H}-\mathrm{C}(8)(3.1) \\ & \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)(3.1) ; \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)(3.7) ; \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)(1.1) \end{aligned}$
6 c	$\mathrm{H}-\mathrm{C}(8)$	$\mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$ (3.9); $\mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)$ (3.7)
d	$\begin{aligned} & \mathrm{H}-\mathrm{C}\left(1^{\prime}\right) \\ & \mathrm{H}-\mathrm{C}(8) \end{aligned}$	$\begin{aligned} & \mathrm{H}_{a}-\mathrm{C}\left(2^{\prime}\right)(6.9) ; \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)(2.3) ; \mathrm{H}-\mathrm{C}(8)(4.1) \\ & \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)(4.6) ; \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)(4.1) ; \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)(1.2) \end{aligned}$
h	$\begin{aligned} & \mathrm{H}-\mathrm{C}\left(1^{\prime}\right) \\ & \mathrm{H}-\mathrm{C}(8) \end{aligned}$	$\begin{aligned} & \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)(6.6) ; \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)(1.1) ; \mathrm{H}-\mathrm{C}(8)(3.2) \\ & \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)(3.6) ; \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)(3.6) ; \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)(1.2) \end{aligned}$
7a [6]	$\begin{aligned} & \mathrm{H}-\mathrm{C}\left(1^{\prime}\right) \\ & \mathrm{H}-\mathrm{C}(8) \end{aligned}$	$\begin{aligned} & \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)(7.2) ; \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)(2.4) ; \mathrm{H}-\mathrm{C}(8)(3.9) \\ & \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)(4.3) ; \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)(3.9) ; \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)(1.6) ; \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)(1.8) \end{aligned}$
b	$\begin{aligned} & \mathrm{H}-\mathrm{C}\left(1^{\prime}\right) \\ & \mathrm{H}-\mathrm{C}(8) \end{aligned}$	$\begin{aligned} & \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)(5.6) ; \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)(2.0) ; \mathrm{H}-\mathrm{C}(8)(3.1) \\ & \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)(3.6) ; \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)(3.4) ; \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)(1.4) ; \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)(1.1) \end{aligned}$
c	$\begin{aligned} & \mathrm{H}-\mathrm{C}\left(1^{\prime}\right) \\ & \mathrm{H}-\mathrm{C}(8) \end{aligned}$	$\begin{aligned} & \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)(6.1) ; \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)(2.8) ; \mathrm{H}-\mathrm{C}(8)(3.0) \\ & \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)(3.2) ; \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)(3.0) \end{aligned}$
d	$\begin{aligned} & \mathrm{H}-\mathrm{C}\left(1^{\prime}\right) \\ & \mathrm{H}-\mathrm{C}(8) \end{aligned}$	$\begin{aligned} & \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)(5.2) ; \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)(2.0) \\ & \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)(2.5) ; \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)(3.3) ; \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)(1.3) \end{aligned}$

${ }^{\text {a }}$) In $\left(\mathrm{D}_{6}\right) \mathrm{DMSO}$ at 23°. $^{\text {b }}$) Purine numbering.

Table 5. ${ }^{3} \mathrm{~J}(H, H)$ Coupling Constants of the Sugar Moieties and N/S-Conformer Populations of Compounds 1,2 , and 7 a at $303 K^{\mathrm{a}}$)

	$\begin{aligned} & J\left(\mathrm{H}-\left(1^{\prime}\right),\right. \\ & \left.\mathrm{H}-\left(2^{\prime}\right)\right) \end{aligned}$	$\begin{aligned} & J\left(\mathrm{H}-\left(1^{\prime}\right),\right. \\ & \left.\mathrm{H}-\left(2^{\prime \prime}\right)\right) \end{aligned}$	$\begin{aligned} & J\left(\mathrm{H}-\left(2^{\prime}\right),\right. \\ & \left.\mathrm{H}-\left(3^{\prime}\right)\right) \end{aligned}$	$\begin{aligned} & J\left(\mathrm{H}-\left(2^{\prime \prime}\right),\right. \\ & \left.\mathrm{H}-\left(3^{\prime}\right)\right) \end{aligned}$	$\begin{aligned} & J\left(\mathrm{H}-\left(3^{\prime}\right),\right. \\ & \left.\mathrm{H}-\left(4^{\prime}\right)\right) \end{aligned}$	Conformation	
						\% N	\% S
1	6.60	6.25	6.20	3.40	3.70	34	66
2 [33]	7.30	6.50	6.30	3.60	3.20	29	71
7 a	6.65	6.30	6.45	4.80	4.30	44	56

Oligonucleotides. The synthesis of oligonucleotides 13-38 shown in the Tables 6-8 was performed using either phosphonate or phosphoramidite chemistry [26] [27]. The methodology followed the standard protocols, and the efficiency of coupling was similar for the modified building blocks as found for the regular compounds. The oligonucleotides were detritylated and purified using oligonucleotide-purification cartridges. The composition of the oligonucleotides was confirmed by tandem hydrolysis with snakevenom phosphodiesterase and alkaline phosphatase as described [28]. Representative examples of composition pattern are shown in Fig. 1. Also the MALDI-TOF spectra were taken in a few cases.

Table 6. T_{m} Values of $5^{\prime}-d($ TTTTTXXTTTTTT $)-3^{\prime} \cdot 5^{\prime}-d($ AAAAAAYAAAAA $)-3^{\prime}$ and $5^{\prime}-d(T T T T T X X T T T T T) \cdot 5^{\prime} d($ AAAAAYYAAAAA)

	$\mathrm{X} \cdot \mathrm{Y}$	$\left.T_{\mathrm{m}}\left[{ }^{\circ} \mathrm{C}\right]^{\mathrm{a}}\right)$		$\mathrm{XX} \cdot \mathrm{YY}$	$\left.T_{\mathrm{m}}\left[{ }^{\circ} \mathrm{C}\right]^{\mathrm{a}}\right)$
$\mathbf{1 3 \cdot 1 4}$	$\mathrm{T} \cdot \mathrm{A}$	$37(44)$	$\mathbf{1 3} \cdot \mathbf{1 4}$	$\mathrm{TT} \cdot \mathrm{AA}$	$37(44)$
$\mathbf{1 5} \cdot \mathbf{1 6}$	$\mathrm{G} \cdot \mathrm{C} \cdot$	$39(45)$	$\mathbf{2 2} \cdot \mathbf{2 3}$	$\mathrm{GG} \cdot \mathrm{CC}$	$39(46)$
$\mathbf{1 7} \cdot \mathbf{1 8}$	$N^{7} \mathrm{G} \cdot \mathrm{G}$	$30(35)$	$\mathbf{2 4} \cdot \mathbf{2 5}$	$N^{7} \mathrm{G} N^{7} \mathrm{G} \cdot \mathrm{GG}$	$28(36)$
$\mathbf{1 7} \cdot \mathbf{1 9}$	$N^{7} \mathrm{G} \cdot \mathrm{c}^{7} \mathrm{G}$	$27(33)$	$\mathbf{2 4} \cdot \mathbf{2 6}$	$N \mathrm{G}^{7} N^{7} \mathrm{G} \cdot \mathrm{c}^{7} \mathrm{Gc}{ }^{7} \mathrm{G}$	$26(32)$
$\mathbf{1 7} \cdot \mathbf{2 0}$	$N^{7} \mathrm{G} \cdot N^{7} \mathrm{G}$	$28(33)$	-	-	-
$\mathbf{1 7} \cdot \mathbf{1 6}$	$N^{7} \mathrm{G} \cdot \mathrm{C}$	$28(35)$	$\mathbf{2 4} \cdot \mathbf{2 3}$	$N^{7} \mathrm{G} N^{7} \mathrm{G} \cdot \mathrm{CC}$	$34(39)$
$\mathbf{1 7} \cdot \mathbf{2 1}$	$N^{7} \mathrm{G} \cdot \mathrm{T}$	$22(30)$	$\mathbf{2 4} \cdot \mathbf{2 7}$	$N^{7} \mathrm{G} N^{7} \mathrm{G} \cdot \mathrm{TT}$	$15(23)$
$\mathbf{1 7} \cdot \mathbf{1 4}$	$N^{7} \mathrm{G} \cdot \mathrm{A}$	$21(27)$	$\mathbf{2 4} \cdot \mathbf{1 4}$	$N^{7} \mathrm{G} N^{7} \mathrm{G} \cdot \mathrm{AA}$	$14(26)$
$\mathbf{1 5} \cdot \mathbf{1 8}$	$\mathrm{G} \cdot \mathrm{G}$	$<10(19)$	$\mathbf{2 2} \cdot \mathbf{2 5}$	$\mathrm{GG} \cdot \mathrm{GG}$	$<10(<10)$

${ }^{\text {a }}$) Measured at 260 nm in $0.1 \mathrm{~m} \mathrm{NaCl}, 10 \mathrm{~mm} \mathrm{MgCl}{ }_{2}$, and 10 mM Na -cacodylate (pH 7.0) at $5 \mu \mathrm{~mol}$ single-strand concentration; values in parentheses were obtained at 260 nm in $1 \mathrm{~m} \mathrm{NaCl}, 100 \mathrm{~mm} \mathrm{MgCl}$, and 60 mm Na -cacodylate (pH 7.0) at $5 \mu \mathrm{~mol}$ single-strand concentration.

In a first series of experiments, the base-pairing capability of $N^{\top} \mathrm{G}_{\mathrm{d}}(\mathbf{1})$ with the four conventional bases was investigated (Table 6). For this purpose, a series of dodecamers were synthesized which are derived from $d(A)_{12}(14)$ or $d(T)_{12}$ (13). Either one or two dT residues were replaced in the center of $\mathrm{d}(\mathrm{T})_{12}$ by $N^{7} \mathrm{G}_{\mathrm{d}}$. For comparison, the dT residues were also substituted by 2^{\prime}-deoxyguanosine dG (2). Hybrids were formed with complementary $\mathrm{d}(\mathrm{A})_{12}$ strands containing one or two $\mathrm{dA}, \mathrm{dT}, \mathrm{dC}, \mathrm{dG}$, or 7-deaza-2'-deoxyguanosine ($\mathrm{c}^{7} \mathrm{G}_{\mathrm{d}}$) residues located opposite $N^{7} \mathrm{G}_{\mathrm{d}}(1)$. Also a duplex with a $\mathrm{dG} \cdot \mathrm{dC}$

Table 7. T_{m} Values and Thermodynamic Data of Duplex Formation of
$5^{\prime}-d($ TAXXTCAATACT $)-3^{\prime} \cdot 3^{\prime}-d(A T Y Y A G T T A T G A)-5^{\prime}$

	XX $\cdot \mathrm{YY}$	$\left.T_{\mathrm{m}}\left[{ }^{\circ} \mathrm{C}\right]^{\mathrm{a}}\right)$	$\Delta H[\mathrm{kcal} / \mathrm{mol}]^{\mathrm{a}}$)	$\Delta S[\mathrm{cal} / \mathrm{mol} \mathrm{K}]^{\mathrm{a}}$)
$28 \cdot 29$	GG. CC	47 (50)	-94(-98)	- $292(-304)$
$28 \cdot 30$	$\mathrm{GG} \cdot N^{7} \mathrm{G} N^{7} \mathrm{G}$	37 (40)	-83(-76)	- $287(-239)$
$31 \cdot 30$	$\mathrm{c}^{7} \mathrm{Gc}^{7} \mathrm{G} \cdot N^{7} \mathrm{G} N^{7} \mathrm{G}$	39 (40)	- 84 (-75)	- 271 (-271)
$32 \cdot 30$	$N^{7} \mathrm{G} N^{7} \mathrm{G} \cdot N^{7} \mathrm{G} N^{7} \mathrm{G}$	37 (38)	-61 (-72)	- $196(-239)$
$28 \cdot 33$	$\mathrm{GG} \cdot\left(\mathrm{m}^{6} N^{7} \mathrm{G}\right)_{2}$	27 (32)	-69 (-71)	- 228 (-241)
31.33	$\mathrm{c}^{7} \mathrm{Gc}^{7} \mathrm{G} \cdot\left(\mathrm{m}^{6} N^{7} \mathrm{G}\right)_{2}$	30 (35)	-75 (-56)	$-249(-184)$
32.33	$N^{7} \mathrm{G} N^{7} \mathrm{G} \cdot\left(\mathrm{m}^{6} N^{7} \mathrm{G}\right)_{2}$	30 (32)	-54 (-63)	-181 (-209)
$34 \cdot 30$	$\left(\mathrm{m}^{6} N^{7} \mathrm{G}\right)_{2} \cdot N^{7} \mathrm{G} N^{7} \mathrm{G}$	32 (35)	- 24 (-48)	- 81 (-157)
$34 \cdot 33$	$\left(\mathrm{m}^{6} N^{7} \mathrm{G}\right)_{2} \cdot\left(\mathrm{~m}^{6} N^{7} \mathrm{G}\right)_{2}$	23 (29)	$-60(-64)$	-199(-216)
$28 \cdot 35$	GG.GG	24 (30)	$-58(-60)$	- $197(-199)$
28-29	GG.CC	47 (50)	-94 (-98)	- $292(-304)$
$32 \cdot 29$	$N^{7} \mathrm{G} N^{7} \mathrm{G} \cdot \mathrm{CC}$	23 (27)	-54 (-57)	$-182(-188)$
$34 \cdot 29$	$\left(\mathrm{m}^{6} N^{7} \mathrm{G}\right)_{2} \cdot \mathrm{CC}$	18 (23)	-29 (-55)	- $97(-184)$

${ }^{2}$) Determined at 260 nm in $0.1 \mathrm{M} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{MgCl}{ }_{2}$, and 10 mm Na-cacodylate (pH 7.0) at $5 \mu \mathrm{~mol}$ singlestrand concentration; values in parentheses were obtained at 260 nm in $1 \mathrm{M} \mathrm{NaCl}, 100 \mathrm{mM} \mathrm{MgCl} 2$, and 60 mM Na -cacodylate (pH 7.0) at $5 \mu \mathrm{~mol}$ single-strand concentration.

Table 8. T_{m} Values and Thermodynamic Data of Duplex Formation of $5^{\prime}-d($ TAGGTXAATAXT $)-3^{\prime} \cdot 3^{\prime}-d(A T C C A Y T T A T Y A)-5^{\prime}$

	$\mathrm{X} \ldots \mathrm{X} \cdot \mathrm{Y} \ldots \mathrm{Y}$	$\left.T_{\mathrm{m}}\left[{ }^{\circ} \mathrm{C}\right]^{\mathrm{a}}\right)$	$\left.\Delta H[\mathrm{kcal} / \mathrm{mol}]^{\mathrm{a}}\right)$	$\left.\Delta S[\mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}]^{\mathrm{a}}\right)$
$\mathbf{2 8 \cdot 2 9}$	$\mathrm{C} \ldots \mathrm{C} \cdot \mathrm{G} \ldots \mathrm{G}$	$47(50)$	$-94(-98)$	$-292(-304)$
$\mathbf{3 8 \cdot 2 9}$	$N^{7} \mathrm{G} \ldots N^{7} \mathrm{G} \cdot \mathrm{G} \ldots \mathrm{G}$	$37(39)$	$-85(-83)$	$-270(-266)$
$\mathbf{3 6 \cdot 3 7}$	$N^{7} \mathrm{G} \ldots N^{7} \mathrm{G} \cdot \mathrm{c}^{7} \mathrm{G} \ldots \mathrm{c}^{7} \mathrm{G}$	$35(39)$	$-81(-75)$	$-262(-240)$
$\mathbf{3 6 \cdot 3 8}$	$N^{7} \mathrm{G} \ldots N^{7} \mathrm{G} \cdot N^{7} \mathrm{G} \ldots N^{7} \mathrm{G}$	$32(34)$	$-81(-72)$	$-264(-234)$
$\mathbf{2 8} \cdot \mathbf{3 8}$	$C \ldots \mathrm{C} \cdot N^{7} \mathrm{G} \ldots N^{7} \mathrm{G}$	$19(23)$	$-61(-58)$	$-196(-197)$

${ }^{\text {a }}$) Determined at 260 nm in $0.1 \mathrm{M} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{MgCl}$, and $10 \mathrm{~mm} \mathrm{Na-cacodylate} \mathrm{(} \mathrm{pH} 7.0$) at $5 \mu \mathrm{~mol}$ singlestrand concentration; values in parentheses were obtained at 260 nm in $1 \mathrm{~m} \mathrm{NaCl}, 100 \mathrm{mM} \mathrm{MgCl}{ }_{2}$, and 60 mm Na-cacodylate (pH 7.0) at $5 \mu \mathrm{~mol}$ single-strand concentration.
base pair ($15 \cdot 16$) and one with a $\mathrm{dG} \cdot \mathrm{dG}$ mismatch ($15 \cdot 18$) was formed. The T_{m} measurements were performed in 0.1 m NaCl containing $10 \mathrm{~mm} \mathrm{MgCl}_{2}$ as well as in 1 m NaCl (data in parenthesis). The melting curves were determined UV-spectrophotometrically and are sigmoidal melting profiles in all cases. Two typical profiles are shown in Fig. $2 a$ and $2 b$.

The T_{m} values of these duplexes are listed in Table 6 . For comparison the T_{m} values of non-modified $\mathrm{d}(\mathrm{T})_{12} \cdot \mathrm{~d}(\mathrm{~A})_{12}(\mathbf{1 3} \cdot \mathbf{1 4})$ are included. From the T_{m} values of Table 6 it is apparent that the incorporation of two $N^{7} \mathrm{G}_{\mathrm{d}}$ residues in the dT strand of the duplex $\mathrm{d}(\mathrm{T})_{12} \cdot \mathrm{~d}(\mathrm{~A})_{12}$ reduces the T_{m} values by only $9^{\circ}(\mathbf{2 4} \cdot \mathbf{2 5})$ compared to the unmodified duplex $13 \cdot 14$. The duplex $22 \cdot 25$ with two dG-dG mismatches shows a T_{m} decrease of more than 25°. Also a clear discrimination between the other bases located opposite to $N^{7} \mathrm{G}_{\mathrm{d}}(\mathbf{1})$ is observed (Table 6). The duplexes in which $N^{7} \mathrm{G}_{\mathrm{d}}$ is facing dG or 7-deaza-2'deoxyguanosine show significantly higher T_{m} values as those facing dA or dT . Also the

Time [min]

Time [min]

Fig. 1. HPLC Profiles of the oligonucleotide $\mathbf{3 2}$ and $\mathbf{3 0}$ after enzymatic hydrolysis with snake-venom phosphodiesterase followed by alkaline phosphatase in 1 m Tris $\cdot \mathrm{HCl}$ buffer (pH 8.3): a) from 32 measured at 260 nm , b) from 32, measured at 280 nm, c) from 30, measured at 260 nm , and d) from 30 , measured at $280 \mathrm{~nm} .{ }^{7} \mathrm{G}_{\mathrm{d}}=N^{7} \mathrm{G}_{\mathrm{d}}$.

Fig. 2. Normalized melting profiles of the duplexes a) $17 \cdot 18$ and b) $\mathbf{2 4} \cdot \mathbf{2 5}$ measured at 260 nm in $1 \mathrm{~m} \mathrm{NaCl}, 100 \mathrm{~mm}$ MgCl_{2}, and 60 mm Na-cacodylate (pH 7.1) at $5 \mu \mathrm{M}$ single-strand concentration. c) Temperature-dependent $C D$ spectra of the duplexes $d\left(A_{12}\right) \cdot d\left(T_{12}\right)(\mathbf{1 3} \cdot \mathbf{1 4})$ and d$) d\left(T_{5} N^{7} G_{2} T_{5}\right) \cdot d\left(A_{5} G_{2} A_{5}\right)(\mathbf{2 4} \cdot \mathbf{2 5})$
hybrids with $N^{7} \mathrm{G}_{\mathrm{d}}$ opposite to $\mathrm{dC}(17 \cdot 16$ and $24 \cdot 23)$ give a relatively high T_{m} value. From these observations, it is concluded that $N^{7} \mathrm{G}_{\mathrm{d}}$ pairs with dG and 7-deaza-2'-deoxyguanosine and eventually with dC and $N^{7} \mathrm{G}_{\mathrm{d}}$, but not with dA or dT . The CD spectra of duplexes, e.g. $17 \cdot 18\left(N^{7} \mathrm{G}_{\mathrm{d}} \cdot \mathrm{dG}\right)$ and $24 \cdot \mathbf{2 5}\left(N^{7} \mathrm{G}_{\mathrm{d}} N^{7} \mathrm{G}_{\mathrm{d}} \cdot \mathrm{dGdG}\right)$ were similar to that of $\mathbf{1 3} \cdot \mathbf{1 4}$ (Fig. 2, c and d). No significant changes of the CD spectra were observed when one or two $N^{7} \mathrm{G}_{\mathrm{d}}$ residues were introduced into the duplex structure.

In a further set of experiments, the base pairing of $N^{7} \mathrm{G}_{\mathrm{d}}(1)$ with dG (2) and with 7 -deaza- 2^{\prime}-deoxyguanosine was investigated on another duplex which is derived from the dodecamers $5^{\prime}-\mathrm{d}\left(\right.$ TAGGTCAATACT) $\mathbf{3}^{\prime}$ (28) and $5^{\prime}-\mathrm{d}($ ATCCAGTTATGA)-3' (29). This study was undertaken to determine thermodynamic data and to avoid complications which may result from the hybridization of $\mathrm{d}(\mathrm{A})_{12}$ with $\mathrm{d}(\mathrm{T})_{12}$. In the latter case, it is possible that triplexes or even parallel-stranded structures are formed which make the interpretation of data difficult. This is particularly the case, when the modified nucleoside 1 is introduced which shows a tendency to form Hoogsteen base bairs in triplex DNA [8]. The unmodified dodecamers 28 and 29 form a duplex with a T_{m} value of $47^{\circ}(0.1 \mathrm{M} \mathrm{NaCl}$ containing 10 mmol of MgCl_{2} and 10 mmol of Na -cacodylate). The T_{m} value in 1 M NaCl is slightly increased (Table 7). In the following experiments, two consecutive dC residues of 29 were replaced by two $N^{7} \mathrm{G}_{\mathrm{d}}$ residues ($\rightarrow \mathbf{3 0}$). Also the two dG residues of 28 were substituted by two 7-deaza-2'-deoxyguanosine residues ($\rightarrow \mathbf{3 1}$). Finally, the two dG residues of 28 were replaced by two $N^{7} \mathrm{G}_{\mathrm{d}}$ residues ($\rightarrow \mathbf{3 2}$). The duplexes $28 \cdot 30$ $\left(\mathrm{dGdG} \cdot N^{7} \mathrm{G}_{\mathrm{d}} N^{7} \mathrm{G}_{\mathrm{d}}\right), 31 \cdot 30\left(\mathrm{c}^{7} \mathrm{G}_{\mathrm{d}} \mathrm{C}^{7} \mathrm{G}_{\mathrm{d}} \cdot N^{7} \mathrm{G}_{\mathrm{d}} N^{7} \mathrm{G}_{\mathrm{d}}\right)$, and $32 \cdot 30\left(N^{7} \mathrm{G}_{\mathrm{d}} N^{7} \mathrm{G}_{\mathrm{d}} \cdot\right.$ $N^{7} \mathrm{G}_{\mathrm{d}} N^{7} \mathrm{G}_{\mathrm{d}}$) were obtained by hybridization. Typical melting curves of the hybrids $28 \cdot 30$ and $32 \cdot 30$ are shown in Fig. 3, a and b. According to Table 7 the T_{m} values of these duplexes are in the range between 37° and 39° compared to 47° for the parent oligomer.

From the T_{m} values of Table 7 (duplex $28 \cdot \mathbf{3 0} \mathrm{vs}$. duplex $28 \cdot 29$), a base pair of $N^{7} \mathrm{G}_{\mathrm{d}}$ with dG was considered, as it was already discussed on the basis of the T_{m} values of the modified homooligonucleotides 17 and 24 (Table 6). Also base pairing can be discussed for $N^{7} \mathrm{G}_{\mathrm{d}}$ with $N^{7} \mathrm{G}_{\mathrm{d}}$ (duplex $32 \cdot \mathbf{3 0}$). These observations are supported by the enthalpy data of duplex formation of $N^{7} \mathrm{G}_{\mathrm{d}}(\mathbf{1})$ with dG. The replacement of two dC residues by two $N^{7} \mathrm{G}_{\mathrm{d}}(1)$ in the parent duplex $28 \cdot 29$ gives rise to an enthalpy change of $c a .10 \mathrm{kcal}$ (low salt) for the duplex $28 \cdot 30\left(\mathrm{dGdG} \cdot N^{7} \mathrm{G}_{\mathrm{d}} N^{7} \mathrm{G}_{\mathrm{d}}\right.$) compared to ca .35 kcal in the case of a dGdG•dGdG (28-35) mismatch. This supports $N^{7} G_{d}$-dG base pairing. In order to test the participation of the 6 -oxo group in the $N^{7} \mathrm{G}_{\mathrm{d}} \cdot \mathrm{dG}$ base pair, a series of duplexes were formed containing N^{7}-(2-deoxy-erythro-pentofuranosyl)- O^{6}-methylguanine ($\mathrm{m}^{6} N^{7} \mathrm{G}_{\mathrm{d}} ; 7 \mathrm{a}$) instead of $N^{7} \mathrm{G}_{\mathrm{d}}$. The oligomers 33 and 34 containing two $\mathrm{m}^{6} N^{7} \mathrm{G}_{\mathrm{d}}$ residues were hybridized with compound 28 (dGdG), $31\left(c^{7} G_{d} c^{7} G_{d}\right)$, and 32 $\left(N^{7} \mathrm{G}_{\mathrm{d}} N^{7} \mathrm{G}_{\mathrm{d}}\right)$. All of them showed considerably reduced stability with regard to the non-methylated counterparts.

A strongly decreased stability is observed for the duplex $32 \cdot 29\left(N^{7} \mathrm{G}_{\mathrm{d}} N^{7} \mathrm{G}_{\mathrm{d}} \cdot \mathrm{dCdC}\right)$ compared to that of $28 \cdot \mathbf{2 9}(\mathrm{dGdG} \cdot \mathrm{dCdC})$, and a further decrease is found in the case of $34 \cdot 29\left(\mathrm{~m}^{6} N^{7} \mathrm{G}_{\mathrm{d}} \mathrm{m}^{6} N^{7} \mathrm{G}_{\mathrm{d}} \cdot \mathrm{dCdC}\right)$ and also of $\mathbf{3 4} \cdot \mathbf{3 3}\left(\mathrm{m}^{6} N^{7} \mathrm{G}_{\mathrm{d}} \mathrm{m}^{6} N^{7} \mathrm{G}_{\mathrm{d}} \cdot \mathrm{m}^{6} N^{7} \mathrm{G}_{\mathrm{d}}-\right.$ $\mathrm{m}^{6} N^{7} \mathrm{G}_{\mathrm{d}}$). The low stability of these O^{6}-methylated duplexes is similar to that found for the base pairing of 2^{\prime}-deoxy- O^{6}-methylguanosine $\left(\mathrm{m}^{6} \mathrm{G}_{\mathrm{d}}, 6 a\right)$ with dC in regular oligonucleotides [29]. This base pair was under intensive studies as mutagenesis occurs when DNA is treated with methylating carcinogens [30] [31]. The melting experiments per-

Fig. 3. Normalized melting profiles of the duplexes a) $5^{\prime} d($ TAGGTCAATACT $)-3^{\prime} \cdot 5^{\prime}-d\left(A T N^{7} G N^{7} G A G T T A T G A\right)-$ $3^{\prime}(\mathbf{2 8} \cdot \mathbf{3 0})$ and b) $5^{\prime} d\left(T A N^{7} G N^{7} G T C A A T A C T\right)-3^{\prime} \cdot 5^{\prime}-d\left(A T \mathrm{~N}^{7} G \mathrm{~N}^{7} G A G T T A T G A\right)-3^{\prime}(\mathbf{3 2} \cdot \mathbf{3 0})$ measured at 260 nm in $0.1 \mathrm{~m} \mathrm{NaCl}, 10 \mathrm{~mm} \mathrm{MgCl} 2_{2}$, and 10 mm Na-cacodylate (pH 7.1) at $5 \mu \mathrm{~m}$ single-strand concentration. c) Temperature-dependent CD spectra of the duplex $28 \cdot \mathbf{3 0}$ and d) temperature-dependent $\mathrm{B}_{1 \mathrm{u}}$ transition (270 nm) of the duplex 28-30 measured at $5 \mu \mathrm{M}$ single-strand concentration. Solvent system for HPLC (F).
formed in 0.1 m NaCl were also carried out in 1 m NaCl . These conditions increased the T_{m} values but led to the same trends with regard to duplex stability as found under low salt concentration conditions (Table 7). Opposite to the observation made on the homooligomer duplexes $17 \cdot 16\left(N^{7} \mathrm{G}_{\mathrm{d}} \cdot \mathrm{dC}\right)$ and $24 \cdot 23\left(N^{7} \mathrm{G}_{\mathrm{d}} N^{7} \mathrm{G}_{\mathrm{d}} \cdot \mathrm{dCdC}\right)$ implying a $N^{7} \mathrm{G}_{\mathrm{d}} \cdot \mathrm{dC}$ base pair (Table 6), this phenomenon is not observed in the case of the strictly antiparallel duplex $32 \cdot 29\left(N^{7} \mathrm{G}_{d} N^{7} \mathrm{G}_{\mathrm{d}} \cdot \mathrm{dCdC}\right)$. This indicates that such a base pair does not exist in antiparallel duplex DNA. A base pair of $N^{7} \mathrm{G}_{\mathrm{d}}$ with dC as it was recently found in the duplex $\mathrm{d}\left(N^{7} \mathrm{G}_{\mathrm{d}}-\mathrm{C}\right)_{6}$ might have been formed under parallel chain orientation. However, this phenomenon needs further investigation. Table 8 summarizes data of duplexes in which two $N^{7} \mathrm{G}_{\mathrm{d}}$ residues are not nearest neighbors as in Table 7 but are separated by four regular nucleosides. By comparing the stability of the duplexes shown in Table 8 with those of Table 7, similar trends of base-pair stabilities are observed.

As it was of interest to establish the structural motives for the base-pairing mode of $N^{7} \mathrm{G}_{\mathrm{d}}$ with dG, conceivable base pairs were constructed and placed in the center of the DNA duplex. The model building followed the following principles: The duplex is in the B-form, the most favored conformation of the N-glycosylic bond is anti, and the distance between the glycosylated N -atoms is similar to that of regular base pairs. From this examination, the pairing modes III-VIII can be considered for a $N^{7} \mathrm{G}_{\mathrm{d}} \cdot \mathrm{dG}$ base pair.

III a: $X=N$ b: $\mathrm{X}=\mathrm{CH}$

vi

\mathbf{x}

IV a: $\mathbf{X}=\mathbf{N}$
b: $X=\mathbf{C H}$

VII
${ }^{\top} G=N^{\top} G$

X

v

VIII

XI

XII

XIII
${ }^{\top} G=N^{\top} G$

Hoogsteen pairs such as III or IV were excluded as the replacement of 2^{\prime}-deoxyguanosine by 7-deaza-2'-guanosine opposite to $N^{\dagger} \mathrm{G}_{\mathrm{d}}$ does not change the duplex stability significantly (Tables 6-8). The other base-pairing modes V-VIII are all conceivable, and no decision can be made on the most favorable motive.

Apart from the $N^{7} \mathrm{G}_{\mathrm{d}} \cdot \mathrm{dG}$ base pair, base-pair motives IX-XII were built up for the self-pairing of $N^{\dagger} \mathrm{G}_{\mathrm{d}}$ residues. Motives IX and \mathbf{X} are expected to form parallel chains. The
motives XI and XII should lead to antiparallel duplexes. A parallel chain orientation has already been proposed for the $N^{7} \mathrm{G}_{\mathrm{d}} \cdot \mathrm{dG}$ base pair (motive XIII) in triplex DNA [8].

From the experiments described above, it can be concluded that $N^{7} \mathrm{G}_{\mathrm{d}}$ can form a base pair with dG within an antiparallel duplex structure. This base-pair motive is definitely different from that of a Hoogsteen mode found in triplex DNA [8]. Earlier work on $\mathrm{d}\left(N^{7} \mathrm{G}_{\mathrm{d}}-\dot{\mathrm{C}}\right)_{6}$ [6] has shown that this oligonucleotide forms a fairly stable duplex suggesting a base pair between $N^{7} \mathrm{G}_{\mathrm{d}}$ and dC. As this base pair is not formed in the case of an antiparallel DNA (see Table 7), the duplex formed by oligonucleotides containing alternating $N^{7} \mathrm{G}_{\mathrm{d}}-\mathrm{dC}$ might have parallel chains.

We thank Dr. H. Rosemeyer for the pseudorotational analyses of nucleosides. We also appreciate the help of Mrs. E. Feiling and Mrs. C. Mittelbach during oligonucleotide synthesis. Financial support by the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie is gratefully acknowledged.

Experimental Part

1. General. See [4]. The regular phosphonates were prepared by Mrs. E. Feiling, and the CPG-immobilized nucleosides ($30-50 \mu \mathrm{~mol} / \mathrm{g}$ solid support) were from PerSeptive, Wiesbaden, Germany. Oligonucleotide synthesis was performed on a DNA synthesizer, model 380 B, Applied Biosystems, Weiterstadt, Germany. Snake-venom phosphodiesterase (EC 3.1.15.1, Crotallus durissus) and alkaline phosphatase (EC 3.1.3.1, E. coli) were generous gifts from Boehringer Mannheim GmbH, Germany. The enzymatic hydrolysis of the oligomers was performed as described [28] using the following extinction coefficients: $\varepsilon_{260}: N^{7} \mathrm{G}_{\mathrm{d}} 2700$, dT 8800, dC 7300, dA 15400 , dG 11700. Solvent systems for flash chromatography (FC), TLC, and $\mathrm{HPLC}: \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2(A), \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5$ (B), $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1$ (C), $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 4: 1(D), \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt}^{2} / \mathrm{Et}_{3} \mathrm{~N} 45: 45: 10$ (E), 0.1 $\left.\mathrm{m}^{(} \mathrm{Et}_{3} \mathrm{NH}\right) \mathrm{OAc}$ (pH 7.0)/MeCN $95: 5(F), \mathrm{MeCN}(G)$. Gradient $I: 40 \mathrm{~min} 0-40 \% G$ in F. Melting curves were measured with a Cary-1/3 UV/VIS spectrophotometer (Varian, Australia) equipped with a Cary thermoelectrical controller. The actual temperature was measured in the reference cell with a Pt-100 resistor. UV Spectra: 150-20 spectrometer (Hitachi, Japan). MALDI-TOF spectra were provided by Mrs. S. Hahner (Prof. Hilgenkamp, Institute of Medicinal Physics and Biophysics, University of Münster, Germany).
2. 6-Alkoxypurin-2-amines 3f-h: General Procedure: A suspension of 6-chloropurin-2-amine ($1.0 \mathrm{~g}, 6 \mathrm{mmol}$) [12] in the alcohol/alkoxide soln. ($50 \mathrm{ml}, 30 \mathrm{mmol}$) was heated under reflux for 18 h . The solvent was evaporated and the residue dissolved in $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml}$, twice $)$. The $\mathrm{H}_{2} \mathrm{O}$ layer was acidified to pH 5 with AcOH . The solid was removed by filtration, dissolved in MeOH , adsorbed on silica gel (10 g), and applied to FC (silica gel, column $15 \times 3 \mathrm{~cm}, \boldsymbol{A}$): $\mathbf{3 f - h}$.

6-Isobutoxypurin-2-amine (3f): Colorless foam ($850 \mathrm{mg}, 69 \%$). TLC (B): $R_{\mathrm{f}} 0.5$. UV (MeOH): 281 (8800). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.98(d, J=6.60, \mathrm{Me}) ; 2.07(m, \mathrm{CH}) ; 4.18\left(d, J=6.7, \mathrm{CH}_{2} \mathrm{O}\right) ; 6.16\left(s, \mathrm{NH}_{2}\right) ; 7.81$ ($s, \mathrm{H}-\mathrm{C}(8)$); 12.38 (br. s, NH).

6-(Pentyloxy)purin-2-amine (3g). Colorless powder ($940 \mathrm{mg}, 70 \%$). TLC (B): $R_{\mathrm{f}} 0.7$. UV (MeOH): 281 (8500). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.88(t, J=6.8, \mathrm{Me}) ; 1.33\left(m, 2 \mathrm{CH}_{2}\right) ; 1.73\left(t, J=6.5, \mathrm{CH}_{2}\right) ; 4.38(t, J=6.4$, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 6.14\left(s, \mathrm{NH}_{2}\right) ; 7.80(s, \mathrm{H}-\mathrm{C}(8)) ; 12.38$ (br. s, NH). Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}(221.26)$: C 54.28, H 6.83 , N 31.65 ; found: C 54.36 , H $6.88, \mathrm{~N} 31.41$.

6-(2,2-Dimethylpropoxy)purin-2-amine (3h): Colorless foam ($860 \mathrm{mg}, 65 \%$). TLC (B): $R_{\Gamma} 0.7$. UV (MeOH): 281 (8600). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 1.02(s, \mathrm{Me}) ; 4.12\left(s, \mathrm{CH}_{2} \mathrm{O}\right) ; 6.19\left(s, \mathrm{NH}_{2}\right) ; 7.79(s, \mathrm{H}-\mathrm{C}(8)) ; 12.37$ (br. s, $\mathrm{NH})$.
3. Glycosylation of 6-Alkoxypurin-2-amines with 2-Deoxy-3,5-di-O-(4-toluoyl)- α-D-erythro-pentofuranosyl Chloride (8) [9]: General Procedure. Powdered KOH ($650 \mathrm{mg}, 11.6 \mathrm{mmol}$) and TDA-1 ($60 \mu \mathrm{~L}, 0.18 \mathrm{mmol}$) were suspended in anh. MeCN (40 ml). The suspension was stirred for 15 min . Then the 6 -alkoxypurin- 2 -amine (2.6 mmol) [13] [14] was added, and stirring was continued for another 15 min . The halogenose 8 [9] (1.2 g , 3.1 mmol) was then added in portions. After 20 min , insoluble material was filtered off and the solvent evaporated. The resulting oil was applied to FC (silica gel, column $15 \times 6 \mathrm{~cm}, A(500 \mathrm{ml})$, than B) and separated in two main zones in all cases. The faster migrating zone was always the N^{9}-isomer and the slower migrating the N^{7}-isomer.

9-(2-Deoxy-3,5-di-O-(4-toluoyl)- β-D-erythro-pentofuranosyl]-6-ethoxy-9H-purin-2-amine (4b): Colorless foam ($511 \mathrm{mg}, 37 \%$). TLC $(B): R_{f} 0.3$. UV (MeOH): $281(10800) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 1.34(t, J=7.0, \mathrm{Me})$; $2.35,2.38(2 s, 2 \mathrm{Me}) ; 2.69\left(m, \mathrm{H}_{\mathrm{a}}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.19\left(\mathrm{~m}, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.51\left(t, J=6.7, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.51\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right.$,
$2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$) ; $5.73\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.37$ (' $t^{\prime}, J=7.1, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$); 6.46 (s, NH_{2}); $7.28-7.94$ (arom. H); 8.06 (s, $\mathrm{H}-\mathrm{C}(8)$). Anal. calc. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{6}$ (531.57): C $63.27, \mathrm{H} 5.50, \mathrm{~N} 13.17$; found: $\mathrm{C} 63.27, \mathrm{H} 5.65, \mathrm{~N} 13.24$.

7-[2-Deoxy-3,5-di-O-(4-toluoyl)- β-D-erythro-pentofuranosyl/-6-ethoxy-7H-purin-2-amine (5b): Colorless foam ($415 \mathrm{mg}, 30 \%$). TLC (C): $R_{f} 0.4$. UV (MeOH): $294(6000) .{ }^{2} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 1.36(t, J=7.0, \mathrm{Me})$; 2.35, $2.38(2 \mathrm{~s}, 2 \mathrm{Me}) ; 2.73\left(m, \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.91\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.50\left(m, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.50\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right)$; $5.65\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.20\left(s, \mathrm{NH}_{2}\right) ; 6.50\left(\epsilon^{\prime}, J=6.8, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.26-7.93(\mathrm{arom} . \mathrm{H}) ; 8.36(s, \mathrm{H}-\mathrm{C}(8))$. Anal. calc. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{6}$ (531.57): C 63.27, H 5.50, N 13.17; found: C 63.17, H 5.58, N 13.14.

9-[2-Deoxy-3,5-di-O-(4-toluoyl)- β-D-erythro-pentofuranosyl]-6-propoxy- 9 H -purin-2-amine (4c): Colorless foam ($606 \mathrm{mg}, 43 \%$). TLC (B): $R_{\mathrm{f}} 0.5$. UV (MeOH): $281(10800) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.96(t, J=7.4, \mathrm{Me})$; $1.74\left(m, \mathrm{CH}_{2}\right) ; 2.36,2.39(2 s, 2 \mathrm{Me}) ; 2.68\left(m, \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.20\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.34\left(t, J=6.7, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.53$ $\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 4.65\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 5.71\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.38\left(t^{\prime}, J=7.8, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.46\left(s, \mathrm{NH}_{2}\right) ; 7.28-7.94$ (arom. H); 8.15 (s, $\mathrm{H}-\mathrm{C}(8)$). Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{6}$ (545.60): C 63.84, H 5.73, N 12.84; found: C 64.02, H 5.86, N 12.78 .

7-[2-Deoxy-3,5-di-O-(4-toluoyl)- β-D-erythro-pentofuranosyl]- 6 -propoxy-7H-purin-2-amine (5c): Colorless foam ($395 \mathrm{mg}, 28 \%$). TLC (C): $R_{\mathrm{f}} 0.4$. UV (MeOH): $294(6000) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.98(t, J=7.4, \mathrm{Me})$; $1.76\left(m, \mathrm{CH}_{2}\right) ; 2.37,2.41(2 s, 2 \mathrm{Me}) ; 2.75\left(m, \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.93\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.38\left(m, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.57\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right.$, $2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$); $5.66\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.18\left(s, \mathrm{NH}_{2}\right) ; 6.54$ (${ }^{\prime} t^{\prime}, J=6.0, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$); $7.30-7.94$ (arom. H); 8.38 ($s, \mathrm{H}-\mathrm{C}(8)$). Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{6}(545.60)$: C 63.84, H $5.73, \mathrm{~N} 12.84$; found: C 63.94, H $5.82, \mathrm{~N} 12.75$.

9-[2-Deoxy-3,5-di-O-(4-toluoyl)- β-D-erythro-pentofuranosyl]-6-isopropoxy-9H-purin-2-amine (4d): Colorless foam ($511 \mathrm{mg}, 36 \%$). TLC $(B): R_{\mathrm{f}} 0.5$ UV (MeOH): $\left.281(10500) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 1.14,1.35(2 s, 2 \mathrm{Me})$; 2.38, $2.41(2 s, 2 \mathrm{Me}) ; 2.71\left(m, \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.21\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.55\left(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 4.65\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 5.49$ $(m, \mathrm{CHO}) ; 5.75\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.39\left(t^{\prime}, J=6.0, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.40\left(s, \mathrm{NH}_{2}\right) ; 7.31-7.95$ (arom. H$) ; 8.05(\mathrm{~s}, \mathrm{H}-\mathrm{C}(8))$. Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{3} \mathrm{~N}_{5} \mathrm{O}_{6}$ (545.60): C 63.84, H 5.73, N 12.84; found: C 63.87, H 5.92, N 12.90.

7-[2-Deoxy-3,5-di-O-(4-toluoyl)- β-D-erythro-pentofuranosyl]-6-isopropoxy-7H-purin-2-amine (5d): Colorless foam ($496 \mathrm{mg}, 35 \%$). TLC (C): $R_{\mathrm{f}} 0.4$. UV (MeOH): $294(6100) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 1.34,1.36(2 \mathrm{~s}, 2 \mathrm{Me})$; $2.35,2.38(2 s, 2 \mathrm{Me}) ; 2.60\left(m, \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.86\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.58\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.43(\mathrm{~m}, \mathrm{CHO}) ;$ $5.65\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.18\left(s, \mathrm{NH}_{2}\right) ; 6.49\left(t^{\prime}, J=7.0, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.26-7.93(\mathrm{arom} . \mathrm{H}) ; 8.33(s, \mathrm{H}-\mathrm{C}(8))$. Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{6}(545.60): \mathrm{C} 63.84, \mathrm{H} 5.73, \mathrm{~N} 12.84$; found: C $63.76, \mathrm{H} 5.66, \mathrm{~N} 12.80$.

6 -Butoxy-9-[2-deoxy-3,5-di-O-(4-toluoyl)- β-D-erythro-pentofuranosyl]-9H-purin-2-amine (4e): Colorless foam ($568 \mathrm{mg}, 39 \%$). TLC $(B): R_{\mathrm{f}} 0.4 . \mathrm{UV}(\mathrm{MeOH}): 281(10000) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.97(t, J=7.4, \mathrm{Me})$; $1.45\left(m, \mathrm{CH}_{2}\right) ; 1.78\left(m, \mathrm{CH}_{2}\right) ; 2.41,2.44(2 s, 2 \mathrm{Me}) ; 2.73\left(m, \mathrm{H}_{a}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.25\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.45(t, J=6.6$, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 4.56\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 4.68\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 5.79\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.43\left(d d, J=6.4, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.46\left(s, \mathrm{NH}_{2}\right)$; 7.34-7.99 (arom. H); $8.09(s, \mathrm{H}-\mathrm{C}(8))$. Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{6}(559.63)$: C 64.39, H 5.94, N 12.51; found: C 64.50, H 5.90, N 12.57.

6-Butoxy-7-[2-deoxy-3,5-di-O-(4-toluoyl)- β-D-erythro-pentofuranosyl]-7H-purin-2-amine (5e): Colorless foam ($437 \mathrm{mg}, 30 \%$). TLC (C): $R_{f} 0.4$. UV (MeOH): $294(5700) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.83(t, J=7.3, \mathrm{Me})$; $1.42\left(m, \mathrm{CH}_{2}\right) ; 1.70\left(m, \mathrm{CH}_{2}\right) ; 2.35,2.39(2 s, 2 \mathrm{Me}) ; 2.75\left(m, \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.91\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.38(t, J=6.3$, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 4.55\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.63\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.18\left(s, \mathrm{NH}_{2}\right) ; 6.37\left(l^{\prime}, J=5.9, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.27-7.93$ (arom. H); 8.57 ($s, \mathrm{H}-\mathrm{C}(8)$). Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{6}$ (559.63): C 64.39, H 5.94, N 12.51; found: C 64.42, H 6.04, N 12.45.

9-[2-Deoxy-3,5-di-O-(4-toluoyl)- β-D-erythro-pentofuranosyl]-б-isobutoxy-9H-purin-2-amine (4f): Colorless foam ($538 \mathrm{mg}, 37 \%$). TLC (B): $R_{\mathrm{f}} 0.4$. UV (MeOH): $281(10800)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.98,0.99(2 s, 2 \mathrm{Me})$; $2.08(m, \mathrm{CH}) ; 2.37,2.41(2 s, 2 \mathrm{Me}) ; 2.73\left(m, \mathrm{H}_{a}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.22\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.20\left(d, J=6.5, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.55(m$, $\left.2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 4.65\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 5.75\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.40\left(s, \mathrm{NH}_{2}\right) ; 6.44\left(l^{\prime}, J=7.5, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.30^{-} 7.95$ (arom. H): 8.07 ($s, \mathrm{H}-\mathrm{C}(8)$). Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{6}$ (559.63): C $64.39, \mathrm{H} 5.94, \mathrm{~N} 12.51$; found: $\mathrm{C} 64.57, \mathrm{H} 5.83$, N 12.53 .

7-[2-Deoxy-3,5-di-O-(4-toluoyl)- β-D-erythro-pentofuranosyl]-6-isobutoxy-7H-purin-2-amine (5f): Colorless foam ($466 \mathrm{mg}, 32 \%$). TLC (C): $R_{\mathrm{f}} 0.4$. UV (MeOH): $294(6000) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.94,0.97(2 \mathrm{~s}, 2 \mathrm{Me})$; $2.02(m, \mathrm{CH}) ; 2.35,2.39(2 s, 2 \mathrm{Me}) ; 2.75\left(m, \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.90\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.18\left(d, J=6.0, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.55$ $\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.65\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.19\left(\mathrm{~s}, \mathrm{NH}_{2}\right) ; 6.53\left(d d, J=5.7, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.27-7.92$ (arom. H); 8.37 (s, $\mathrm{H}-\mathrm{C}(8)$). Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{6}$ (559.6): C 64.39, H 5.94, N 12.51 ; found: C $64.24, \mathrm{H} 6.03, \mathrm{~N} 12.43$.

9-[2 -Deoxy-3,5-di-O-(4-toluoyl)- β-D-erythro-pentofuranosyl]-6-(pentyloxy)-9H-purin-2-amine (4g): Colorless foam ($578 \mathrm{mg}, 38 \%$). TLC $(B): R_{f} 0.4$. UV (MeOH): $281(9900) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.88(t, J=6.8$, $\mathrm{Me}) ; 1.35\left(m, 2 \mathrm{CH}_{2}\right) ; 1.78\left(t, J=6.7, \mathrm{CH}_{2}\right) ; 2.36,2.39(2 s, 2 \mathrm{Me}) ; 2.67\left(m, \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.19\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.38$ $\left(t, J=6.6, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.50\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 4.62\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 5.71\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.43\left({ }^{\prime} t^{\prime}, J=6.6, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.44$ $\left(s, \mathrm{NH}_{2}\right) ; 7.29-7.94$ (arom. H); $8.05(s, \mathrm{H}-\mathrm{C}(8))$. Anal. calc. for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{6}(573.66): \mathrm{C} 64.91, \mathrm{H} 6.15, \mathrm{~N} 12.21$; found: C $65.30, \mathrm{H} 5.85$, N 12.00.

7-[2-Deoxy-3,5-di-O-(4-toluoyl)- β-D-erythro-pentofuranosyl $]-6$-(pentyloxy)- 7 H -purin-2-amine (5 g): Colorless foam ($441 \mathrm{mg}, 30 \%$). TLC (C): $R_{\mathrm{f}} 0.4$. UV (MeOH): 294 (5800). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ((D6) DMSO): 0.79 ($($, $J=7.3 \mathrm{Me}) ; 1.25,1.38,1.73\left(3 m, 3 \mathrm{CH}_{2}\right) ; 2.37,2.41(2 \mathrm{~s}, 2 \mathrm{Me}) ; 2.75\left(m, \mathrm{H}_{a}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.94\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.41(t$, $\left.J=6.3, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.57\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.66\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.18\left(\mathrm{~s}, \mathrm{NH}_{2}\right) ; 6.52\left({ }^{\prime} t^{\prime}, J=7.7, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right)$; 7.29-7.94 (arom. H); 8.38 ($s, \mathrm{H}-\mathrm{C}(8)$). Anal. calc. for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{6}$ (573.66): C 64.91, H 6.15, N 12.21; found: C 64.73, H 5.88, N 12.18 .

9-[2-Deoxy-3,5-di-O-(4-toluoyl)- β-D-erythro-pentofuranosyl]- 6 -(2,2-dimethylpropoxy)-9H-purine (4h): Colorless foam ($609 \mathrm{mg}, 41 \%$). TLC (B): $R_{f} 0.4$ UV (MeOH): $281(8900) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 1.0(\mathrm{~s}, \mathrm{Me}) ; 2.38$, $2.41(2 \mathrm{~s}, 2 \mathrm{Me}) ; 2.80\left(\mathrm{~m}, \mathrm{H}_{\mathrm{a}}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.00\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.10\left(m, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.57\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.69$ $\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.20\left(s, \mathrm{NH}_{2}\right) ; 6.59\left(d d, J=5.4, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.31-7.92$ (arom. H$) ; 8.04(s, \mathrm{H}-\mathrm{C}(8))$. Anal. calc. for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{6}$ (573.66): C 64.91, H 6.15, N 12.21; found: C 65.18, H 6.38, N 12.00.

7-[2-Deoxy-3,5-di-O-(4-tohooy)- β-D-erythro-pentofuranosyl]-6-(2,2-dimethylpropoxy)-7H-purin-2-amine (5 h): Colorless foam ($426 \mathrm{mg}, 28 \%$). TLC (C): $R_{\mathrm{f}} 0.4$. UV (MeOH): $294(5500) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 1.0$ (s, Me); 2.38, 2.41 ($2 \mathrm{~s}, 2 \mathrm{Me}$); $2.80\left(m, \mathrm{H}_{a}-\mathrm{C}\left(2^{\prime}\right)\right.$); $3.00\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.10\left(m, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.57\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right.$, $\left.2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.69\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.20\left(s, \mathrm{NH}_{2}\right) ; 6.59\left(d d, J=5.4, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.31-7.92$ (arom. H); 8.40 ($s, \mathrm{H}-\mathrm{C}(8)$). Anal. calc. for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{6}$ (573.65): C $64.90, \mathrm{H} 6.15, \mathrm{~N} 12.21$; found: $\mathrm{C} 64.92, \mathrm{H} 6.22, \mathrm{~N} 12.10$.

9-[2-Deoxy-3,5-di-O-(4-toluoyl)- β-D-erythro-pentofuranosyll- 6 -(2-methoxyethoxy)-9 H -purin-2-amine (4i): Colorless foam ($803 \mathrm{mg}, 55 \%$). TLC (B): $R_{\mathrm{f}} 0.3$. UV (MeOH): 281 (9500). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left(\mathrm{D}_{6}\right) \mathrm{DMSO}$): 2.36, 2.38 ($2 s, 2 \mathrm{Me}$); $2.72\left(m, \mathrm{H}_{a}-\mathrm{C}\left(2^{\prime}\right)\right.$); $3.20\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right.$); $3.29(s, \mathrm{MeO}) ; 3.69\left(t, J=4.4, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.52-4.65$ ($m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right), \mathrm{CH}_{2} \mathrm{O}$) ; $5.74\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.38$ (' $\left.t^{\prime}, J=6.8, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.48\left(s, \mathrm{NH}_{2}\right) ; 7.28-7.94$ (arom. H); 8.07 ($s, \mathrm{H}-\mathrm{C}(8)$). Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{7}(561.60)$: C 62.02, H $5.56, \mathrm{~N} 12.47$; found: C 62.26 , H 5.62, N 12.45.

7-(2-Deoxy-3,5-di-O-(4-toluoyl)- β-D-erythro-pentofuranosyl]-6-(2-methoxyethoxy)-7H-purin-2-amine (5i): Colorless foam ($438 \mathrm{mg}, 30 \%$). TLC (C): $R_{\mathrm{f}} 0.4$. UV (MeOH): 294 (5900). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 2.34,2.39$ $(2 s, 2 \mathrm{Me}) ; 2.72\left(m, \mathrm{H}_{a}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.96\left(m, \mathrm{H}_{f}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.24(s, \mathrm{MeO}) ; 3.70\left(t, J=4.3, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.56\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right.$, $\left.2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right), \mathrm{CH}_{2} \mathrm{O}\right) ; 5.63\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.22\left(\mathrm{~s}, \mathrm{NH}_{2}\right) ; 6.48\left(l^{\prime}, J=6.9, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right.$); $7.25-7.98$ (arom. H); 8.36 ($s, \mathrm{H}-\mathrm{C}(8)$). Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{7}(561.60)$: $\mathrm{C} 62.02, \mathrm{H} 5.56, \mathrm{~N} 12.47$; found: $\mathrm{C} 62.22, \mathrm{H} 5.68, \mathrm{~N} 12.47$.
4. Deprotection of Compounds $\mathbf{4 a - i}$ and 5a-i: General Procedure. A soln. of $\mathbf{4 a - i}$ or $5 \mathbf{a - i}(0.50 \mathrm{mmol})$ in $0.1 \mathrm{M} \mathrm{NaOMe} / \mathrm{MeOH}(20 \mathrm{ml})$ was stirred at r.t. for 30 min . The mixture was adsorbed on silica gel (10 g) and applied to FC (silica gel; column $10 \times 5 \mathrm{~cm}, B(300 \mathrm{ml})$, then C).

9-(2-Deoxy- β-D-erythro-pentofuranosyl)-6-ethoxy-9H-purin-2-amine (6b): (117 mg 79%). TLC (C): $R_{\mathrm{f}} 0.5$. UV (MeOH): 247 (9400), 281 (8900). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 1.36(t, J=6.9, \mathrm{Me}) ; 2.24\left(m, \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{2}\right)\right) ; 2.61$ $\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.56\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.86\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.38\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.47\left(q, J=7.0, \mathrm{CH}_{2} \mathrm{O}\right) ; 5.0$ $\left(t, J=4.9, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.27\left(d, J=3.2, \mathrm{OH}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.23\left({ }^{\prime} t, J=6.7, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.36\left(s, \mathrm{NH}_{2}\right) ; 8.09(s, \mathrm{H}-\mathrm{C}(8))$. Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4}$ (295.30): C 48.81, H 5.80, N 23.72; found: C 48.91, H 5.97, N 23.42.

7-(2-Deoxy- β-D-erythro-pentofuranosyl)-6-ethoxy-7H-purin-2-amine (7 b): Colorless foam ($120 \mathrm{mg}, 81 \%$). TLC (D): $R_{\mathrm{f}} 0.5$. UV (MeOH): $294(5600) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 1.35(t, J=7.0, \mathrm{Me}) ; 2.30\left(m, \mathrm{H}_{a}-\mathrm{C}\left(2^{\prime}\right)\right)$; $2.42\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.52\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.82\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.29\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.45\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.97(t, J=5.0$, $\left.\mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.31\left(d, J=3.8, \mathrm{OH}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.12\left(s, \mathrm{NH}_{2}\right) ; 6.31\left({ }^{\prime} t^{\prime}, J=6.2, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 8.38(s, \mathrm{H}-\mathrm{C}(8))$. Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4}$ (295.30): C 48.81, H 5.80, N 23.72; found: C 48.71, H 6.01, N 23.66.

9-(2-Deoxy- β-D-erythro-pentofuranosyl)-6-propoxy-9H-purin-2-amine (6c): Colorless foam ($118 \mathrm{mg}, 76 \%$). TLC (C): $R_{\mathrm{r}} 0.5$. UV (MeOH): 247 (9400), 281 (8900). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.98(t, J=7.3, \mathrm{Me}) ; 1.78$ $\left(m, \mathrm{CH}_{2}\right) ; 2.23\left(m, \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.61\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.55\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.85\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.37\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.37$ $\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 5.0\left(t, J=5.4, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.26\left(d, J=3.7, \mathrm{OH}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.23\left({ }^{\prime} t^{\prime}, J=7.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.37\left(s, \mathrm{NH}_{2}\right)$; 8.08 (s, $\mathrm{H}-\mathrm{C}(8)$). Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{4}$ (309.33): C $50.48, \mathrm{H} 6.19, \mathrm{~N} 22.64$; found: $\mathrm{C} 50.58, \mathrm{H} 6.31, \mathrm{~N} 22.52$.

7-(2-Deoxy- β-D-erythro-pentofuranosyl)-6-propoxy-7H-purin-2-amine (7c): Colorless foam ($127 \mathrm{mg}, 82 \%$). TLC (D): $R_{t} 0.4$ UV (MeOH): $294(5900) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.80(t, J=7.4, \mathrm{Me}) ; 1.78\left(m, \mathrm{CH}_{2}\right) ; 2.27$ $\left(m, \mathrm{H}_{a}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.34\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.58\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.83\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.35\left(m, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.35\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right)$; $4.96\left(t, J=5.3, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.27\left(d, J=4.2, \mathrm{OH}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.10\left(\mathrm{~s}, \mathrm{NH}_{2}\right) ; 6.33\left({ }^{\prime} t^{\prime}, J=6.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 8.38$ (s, $\mathrm{H}-\mathrm{C}(8)$). Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{4}$ (309.33): C 50.48 , H 6.19, N 22.64; found: C 50.48, H 6.25, N 22.40.

9-(2-Deoxy- β-D-erythro-pentofuranosyl)-6-isopropoxy-9H-purin-2-amine (6d): Colorless foam (118 mg , 76%). TLC (C): $R_{\mathrm{f}} 0.5$. UV (MeOH): $247(9400), 281(8900) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 1.31,1.33(2 s, 2 \mathrm{Me}) ; 2.19$ $\left(m, \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.58\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.55\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.82\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.34\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 5.01(t, J=5.3$, $\left.\mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.26\left(d, J=3.7\right.$, $\left.\mathrm{OH}-\mathrm{C}\left(3^{\prime}\right)\right) ; 5.47(\mathrm{~m}, \mathrm{CHO}) ; 6.20\left({ }^{\prime} t^{\prime}, J=6.2, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.35\left(s, \mathrm{NH}_{2}\right)$; 8.05 (s, H-C(8)). Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{4}$ (309.33): C 50.48 , H 6.19, N 22.64 ; found: C $50.32, \mathrm{H} 6.19$, N 22.47 .

7-(2-Deoxy- β-D-erythro-pentofuranosyl)-6-isopropoxy-7H-purin-2-amine (7d): Colorless foam (128 mg , 83%). TLC (D): $R_{\mathrm{f}} 0.5 . \mathrm{UV}(\mathrm{MeOH}): 294$ (5600). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 1.33,1.35$ ($2 \mathrm{~s}, 2 \mathrm{Me}$); 2.28 $\left(m, \mathrm{H}_{\mathrm{a}}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.44\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.57\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.83\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.29\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 5.0(t, J=5.2$, $\left.\mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.30\left(d, J=4.1, \mathrm{OH}-\mathrm{C}\left(3^{\prime}\right)\right) ; 5.42(m, \mathrm{CHO}) ; 6.10\left(s, \mathrm{NH}_{2}\right) ; 6.30\left({ }^{\prime} t^{\prime}, J=6.2, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 8.37$ ($s, \mathrm{H}-\mathrm{C}(8)$). Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{4}$ (309.33): $\mathrm{C} 50.48, \mathrm{H} 6.19, \mathrm{~N} 22.64$; found: $\mathrm{C} 50.31, \mathrm{H} 6.19, \mathrm{~N} 22.39$.

6 -Butoxy-9-(2-deoxy- β-D-erythro-pentofuranosyl)-9H-purin-2-amine (6 e): Colorless foam ($124 \mathrm{mg}, 77 \%$). TLC (C): $R_{\mathrm{f}} 0.5$ UV (MeOH): $247(9400), 281(8500) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.93(t, J=7.3, \mathrm{Me}) ; 2.21$ $\left(m, \mathrm{H}_{z}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.57\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.53\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.98\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.40\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{CH}_{2} \mathrm{O}\right) ; 4.99$ $\left(t, J=5.5, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.25\left(d, J=3.8, \mathrm{OH}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.21\left({ }^{\circ} t^{\prime}, J=7.0, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.61\left(s, \mathrm{NH}_{2}\right) ; 8.06(s, \mathrm{H}-\mathrm{C}(8))$.

6 -Butoxy-7-(2-deoxy- β-D-erythro-pentofuranosyl)-7H-purin-2-amine (7e): Colorless foam ($130 \mathrm{mg}, 80 \%$). $\mathrm{TLC}(D): R_{\mathrm{f}} 0.5 . \mathrm{UV}(\mathrm{MeOH}): 294(5800) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.95(s, J=7.3, \mathrm{Me}) ; 1.45,1.76\left(2 \mathrm{~m}, 2 \mathrm{CH}_{2}\right)$; $2.32\left(m, \mathrm{H}_{a}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.45\left(m, \mathrm{H}_{g}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.59\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.85\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.32\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.42(m$, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 4.97\left(t, J=5.1, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.28\left(d, J=3.9, \mathrm{OH}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.10\left(s, \mathrm{NH}_{2}\right) ; 6.34\left({ }^{\prime} t^{\prime}, J=6.1, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 8.40$ ($s, \mathrm{H}-\mathrm{C}(8)$).

9-(2-Deoxy- β-D-erythro-pentofuranosyl)-6-isobutoxy- 9 H -purin-2-amine (6 f): Colorless foam ($126 \mathrm{mg}, 78 \%$). TLC (C): $\left.R_{\mathrm{f}} 0.5 . \mathrm{UV}(\mathrm{MeOH}): 247(9400), 281(9200) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.98,0.99$ ($2 \mathrm{~s}, 2 \mathrm{Me}$); 2.21 $(m, \mathrm{C}-\mathrm{H}) ; 2.24\left(\mathrm{~m}, \mathrm{H}_{a}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.61\left(\mathrm{~m}, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.57\left(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.84\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.20\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right.$, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 4.99\left(t, J=5.2, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.25\left(d, J=3.7, \mathrm{OH}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.23\left(t^{\prime}, J=6.5, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.37\left(\mathrm{~s}, \mathrm{NH}_{2}\right) ; 8.08$ ($s, \mathrm{H}-\mathrm{C}(8)$). Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{4}$ (323.35): C $52.00, \mathrm{H} 6.55$, N 21.66 ; found: $\mathrm{C} 52.12, \mathrm{H} 6.52, \mathrm{~N} 21.57$.

7-(2-Deoxy- β-D-erythro-pentofuranosyl)-6-isobutoxy-7H-purin-2-amine (7 f): Colorless foam ($136 \mathrm{mg}, 84 \%$). TLC (D): $\left.R_{\mathrm{f}} 0.5 . \mathrm{UV}(\mathrm{MeOH}): 294(5900) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 1.00,1.01(2 s, 2 \mathrm{Me}) ; 2.10(m, \mathrm{H}-\mathrm{C}) ; 2.33$ $\left(m, \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.44\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.60\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.86\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.20\left(m, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.33\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ;$ $4.97\left(t, J=5.1, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.28\left(d, J=3.7, \mathrm{OH}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.11\left(s, \mathrm{NH}_{2}\right) ; 6.37\left({ }^{\circ} t^{\prime}, J=6.1, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 8.41$ ($s, \mathrm{H}-\mathrm{C}(8)$). Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{4}$ (323.35): C $52.00, \mathrm{H} 6.55$, N 21.66 ; found: C $51.91, \mathrm{H} 6.27, \mathrm{~N} 20.98$.

9-(2-Deoxy- β-D-erythro-pentofuranosyl)-6-(pentyloxy)-9H-purin-2-amine (6 g): Colorless foam (133 mg , $79 \%)$. TLC $(C): R_{f} 0.5 . \mathrm{UV}(\mathrm{MeOH}): 247(9400), 281(8600) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.89(t, J=7.0, \mathrm{Me}) ; 1.35$, $1.73\left(2 m, 3 \mathrm{CH}_{2}\right) ; 2.24\left(m, \mathrm{H}_{a}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.59\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.55\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.85\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.40$ $\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{CH}_{2} \mathrm{O}\right) ; 5.01\left(t, J=5.2, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.27\left(d, J=3.7, \mathrm{OH}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.23\left(t^{\prime}, J=6.1, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.36$ $\left(s, \mathrm{NH}_{2}\right) ; 8.08(s, \mathrm{H}-\mathrm{C}(8))$.

7-(2-Deoxy- β-D-erythro-pentofuranosyl)-6-(pentyloxy)-7H-purin-2-amine (7 g): Colorless foam (127 mg , $75 \%)$ TLC (D): $R_{\mathrm{f}} 0.5 \mathrm{UV}(\mathrm{MeOH}): 294(5700) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.91(t, J=7.0, \mathrm{Me}) ; 1.40,1.77(2 \mathrm{~m}$, $\left.3 \mathrm{CH}_{2}\right) ; 2.32\left(m, \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.44\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.55\left(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.85\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.10\left(m, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.31$ $\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.96\left(t, J=5.1, \mathrm{OH} \sim \mathrm{C}\left(5^{\prime}\right)\right) ; 5.27\left(d, J=3.8, \mathrm{OH}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.10\left(\mathrm{~s}, \mathrm{NH}_{2}\right) ; 6.34\left(t^{\prime}, J=6.3\right.$. $\left.\mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 8.40(s, \mathrm{H}-\mathrm{C}(8))$.

9-(2-Deoxy- β-D-erythro-pentofuranosyl)-6-(2,2-dimethylpropoxy)-9H-purin-2-amine (6h): Colorless foam $(133 \mathrm{mg}, 79 \%)$. TLC $(C): R_{\mathrm{f}} 0.5 . \mathrm{UV}(\mathrm{MeOH}): 247(9400), 281(8800) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.89(t, J=7.0$, $\mathrm{Me}) ; 1.35,1.73\left(2 m, 3 \mathrm{CH}_{2}\right) ; 2.24\left(m, \mathrm{H}_{a}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.59\left(m, \mathrm{H}_{p}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.55\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.85\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$; $4.40\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{CH}_{2} \mathrm{O}\right) ; 5.01\left(t, J=5.2, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.27\left(d, J=3.7, \mathrm{OH}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.23\left(t^{\prime}, J=6.1, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ;$ $6.36\left(\mathrm{~s}, \mathrm{NH}_{2}\right) ; 8.08(\mathrm{~s}, \mathrm{H}-\mathrm{C}(8))$.

7-(2-Deoxy- β-D-erythro-pentofuranosyl)-6-(2,2-dimethylpropoxy/-7H-purin-2-amine (7h): Colorless foam $(127 \mathrm{mg}, 75 \%)$. TLC $(D): R_{\mathrm{f}} 0.5$ UV (MeOH): $294(5900) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 0.91(t, J=7.0, \mathrm{Me}) ; 1.40$, $1.77\left(2 m, 3 \mathrm{CH}_{2}\right) ; 2.32\left(m, \mathrm{H}_{z}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.44\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.55\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.85\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.10$ $\left(m, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.31\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.96\left(t, J=5.1, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.27\left(d, J=3.8, \mathrm{OH}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.10\left(s, \mathrm{NH}_{2}\right) ; 6.34\left(t^{\prime} t\right.$, $\left.J=6.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 8.40(s, \mathrm{H}-\mathrm{C}(8))$.

9-(2-Deoxy- β-D-erythro-pentofuranosyl)-6-(2-methoxyethoxy)-9H-purin-2-amine (6i): Colorless foam $(140 \mathrm{mg}, 86 \%)$. TLC $(C): R_{\mathrm{f}} 0.5$. UV (MeOH): 247 (9400), $281(8600) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ((D. $\left.\left.{ }_{6}\right) \mathrm{DMSO}\right): 2.23$ $\left(m, \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.59\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.31(\mathrm{~s}, \mathrm{MeO}) ; 3.70\left(m, \mathrm{CH}_{2} \mathrm{O}\right) ; 3.58\left(2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.70\left(m, \mathrm{CH}_{2} \mathrm{O}\right) ; 3.84$ $\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.37\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.23\left(r^{\prime}, J=5.9, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.40\left(s, \mathrm{NH}_{2}\right) ; 8.09(s, \mathrm{H}-\mathrm{C}(8))$. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{5}(325.32)$: C 48.00, H 5.89, N 21.53; found: C 48.10, H 5.95, N 21.39.

7-(2-Deoxy- β-D-erythro-pentofuranosyl)-6-(2-methoxyethoxy)-7H-purin-2-amine (7i): Colorless foam ($132 \mathrm{mg}, 81 \%$). TLC (D): $R_{\mathrm{f}} 0.5$. UV (MeOH): $294(5700) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 2.33\left(m, \mathrm{H}_{\mathrm{a}}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.46$ $\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.31(s, \mathrm{MeO}) ; 3.72\left(m, \mathrm{CH}_{2} \mathrm{O}\right) ; 3.55\left(2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.72\left(m, \mathrm{CH}_{2} \mathrm{O}\right) ; 3.85\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$; $4.31\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.13\left(\mathrm{~s}, \mathrm{NH}_{2}\right) ; 6.33\left(t^{\prime}, J=6.2, \mathrm{H}-\mathrm{C}\left(l^{\prime}\right)\right) ; 8.41(s, \mathrm{H}-\mathrm{C}(8))$. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{5}$ (325.33): C 48.00 , H 5.89 , N 21.53 ; found: C 48.03 , H 5.88 , N 21.50.
5. 2-Amino-7-(2-deoxy- β-D-erythro-pentofuranosyl)-7H-purin-6-one (1): Compound 7d ($170 \mathrm{mg}, 0.55 \mathrm{mmol}$) was treated with 2 N aq. $\mathrm{NaOH}(40 \mathrm{ml})$ at 50° for 100 h . The soln. was cooled, neutralized with AcOH , diluted with
$\mathrm{H}_{2} \mathrm{O}(250 \mathrm{ml})$, and applied to Serdolite AD-4 (column $15 \times 5 \mathrm{~cm}$). The column was washed with $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{ml})$ and 1 eluted with i- $\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O} 9: 1$. Evaporation afforded $1(82 \%)$. Anal. data: identical with those reported [6].
6. N - 7 -(2-Deoxy- β-D-erythro-pentofuranosyl)-6-methoxy-7H-purin-2-yllformamide (9): A soln. of 7a ($300 \mathrm{mg}, 1.07 \mathrm{mmol}$) in $\mathrm{MeOH}(30 \mathrm{ml}$) was stirred with N, N-dimethylformamide dimethyl acetal ($2 \mathrm{ml}, 12 \mathrm{mmol}$) at 50° for 4 h . Then $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ was added and stirring continued for another $24 \mathrm{~h}\left(50^{\circ}\right)$. The soln. was evaporated and the oily residue co-evaporated with acetone (10 ml , twice) and applied to FC (silica gel, column $15 \times 4 \mathrm{~cm}, D$), Evaporation of the main zone afforded an amorphous powder ($199 \mathrm{mg}, 60 \%$). TLC (D): $R_{\mathrm{f}} 0.6 . \mathrm{UV}(\mathrm{MeOH})$: 294 (7500). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 2.37\left(m, \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.55\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.55\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.88$ $\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.35\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.96\left(t, J=5.0, \mathrm{OH}-\mathrm{C}\left(5^{\prime}\right)\right) ; 5.33\left(d, J=3.7, \mathrm{OH}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.41\left(t^{\prime}, J=6.3\right.$, $\left.\mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 8.70(s, \mathrm{H}-\mathrm{C}(8)) ; 9.40(d, J=9.2, \mathrm{CHO}) ; 10.72(d, J=9.7, \mathrm{NH})$. Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{5}(309.29)$: C 46.60, H 4.89, N 22.64; found: C $46.70, \mathrm{H} 4.81, \mathrm{~N} 22.53$.
7. $\mathrm{N}-\{7-\{5-\mathrm{O}$ [Bis(4-methoxyphenyl)phenylmethyl $\}$-2-deoxy- β-D-erythro-pentofuranosyl $\}-6-$ methoxy-7H-purin-2-yl\}formamide (10): Compound 9 was dried by repeated co-evaporation with anh. pyridine and suspended in dry pyridine (2 ml). The soln. was stirred in the presence of 4 -(dimethylamino)pyridine ($10 \mathrm{mg}, 0.08 \mathrm{mmol}$) and bis(4-methoxyphenyl)phenylmethyl chloride ($329 \mathrm{mg}, 0.97 \mathrm{mmol}$) for 5 h . The mixture was diluted with $5 \% \mathrm{aq}$. NaHCO_{3} soln. (20 ml) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{ml})$. The combined org. layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent evaporated, and the residue chromatographed (silica gel, column $15 \times 3 \mathrm{~cm}, B$): colorless foam (269 mg , 55%). TLC (A): $R_{\mathrm{f}} 0.6$. UV (MeOH): 294 (7600). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 2.39\left(m, \mathrm{H}_{\alpha}-\mathrm{C}\left(2^{\prime}\right)\right.$); 2.67 $\left(m, \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.16\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.72(2 \mathrm{~s}, \mathrm{MeO}) ; 4.0\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), \mathrm{MeO}\right) ; 4.34\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 5.40(d, J=4.6$, $\left.\mathrm{OH}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.44$ (${ }^{\prime} r^{\prime}, J=6.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$); $6.78-7.34$ ($3 m$, arom. H); 8.55 ($s, \mathrm{H}-\mathrm{C}(8)$); 9.42 ($d, J=9.8, \mathrm{CHO}$); $10.76\left(d, J=9.9, \mathrm{NH}\right.$). Anal. calc. for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5}$ (575.62): C $64.80, \mathrm{H} 5.44, \mathrm{~N} 11.45$; found: C 64.37, H 5.62, N 11.50 .
8. $\mathrm{N}-\{7-\{5-\mathrm{O}-/$ Bis(4-methoxyphenyl)phenylmethyl]-2-deoxy- β-D-erythro-pentofuranosyl\}-6-methoxy-7H-pur-in-2-yl)formamide $3^{\prime}-[(2-C y a n o e t h y l) \mathrm{N}, \mathrm{N}$-Diisopropylphosphoramidite] (11). To a soln. of $10(100 \mathrm{mg}, 0.16 \mathrm{mmol})$ and (i-Pr) ${ }_{2} \mathrm{EtN}(50 \mu \mathrm{l}, 0.28 \mathrm{mmol})$ in anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 ml), chloro(2-cyanoethoxy)(diisopropylamino)phosphine $(133 \mu 1,0.51 \mathrm{mmol})$ was added at r.t. After stirring for 30 min , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and quenched by adding $5 \% \mathrm{NaHCO}_{3}$ soln. (20 ml). Then the aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{ml})$, the combined org. layer dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the colorless oil applied to FC (silica gel, column $9 \times 3 \mathrm{~cm}, E): 11(64 \mathrm{mg}, 52 \%)$. Colorless foam. TLC $(E): R_{\mathrm{f}} 0.4,0.5 .{ }^{1} \mathrm{H}$-NMR (CDCl_{3}): $1.08,1.09$ $\left(2 s, 2 M e_{2} \mathrm{CH}\right) ; 2.43\left(t, J=6.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right) ; 2.59-2.79\left(m, \mathrm{H}_{a}-\mathrm{C}\left(2^{\prime}\right), \mathrm{H}_{\beta}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.37-3.63\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right.$, $\left.2 \mathrm{Me}_{2} \mathrm{CH}\right) ; 3.76(\mathrm{~s}, \mathrm{MeO}) ; 3.87\left(t, J=6.6, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.00(\mathrm{~s}, \mathrm{MeO}) ; 4.29\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.60\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.54$ (${ }^{\prime}$ ', $\left.J=6.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.78-7.40(3 \mathrm{~m}$, arom. H$) ; 7.85(s, \mathrm{H}-\mathrm{C}(8)) ; 8.21(d, J=7.8, \mathrm{CHO}) ; 9.53(d, J=7.9, \mathrm{NH})$. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 149.8,149.6$.
9. Solid-Phase Synthesis of Oligodeoxyribonucleotides. The synthesis of the oligonucleotides 13-38 was carried out on a $1-\mu \mathrm{mol}$ scale using the 3^{\prime}-phosphonates of $\left[(\mathrm{MeO})_{2} \mathrm{Tr}\right] \mathrm{T}_{\mathrm{d}},\left[(\mathrm{MeO})_{2} \mathrm{Tr}\right] b z^{6} \mathrm{~A}_{d}$, and $\left[(\mathrm{MeO})_{2} \operatorname{Tr}\right] \mathrm{fam}^{6} N^{7} \mathrm{G}_{\mathrm{d}}[6]$, as well as by the 3^{\prime}-phosphoramidites of $\left[(\mathrm{MeO})_{2} \mathrm{Tr}\right] \mathrm{T}_{\mathrm{d}},\left[(\mathrm{MeO})_{2} \mathrm{Tr}\right] b z^{6} \mathrm{~A}_{\mathrm{d}}$, $\left[(\mathrm{MeO})_{2} \mathrm{Tr}\right] \mathrm{bz}{ }^{4} \mathrm{C}_{\mathrm{d}},\left[(\mathrm{MeO})_{2} \operatorname{Tr}\right] i b u^{2} \mathrm{G}_{\mathrm{d}},\left[(\mathrm{MeO})_{2} \operatorname{Tr}\right] \mathrm{ibu}^{2} \mathrm{c}^{7} \mathrm{G}_{\mathrm{d}}[32]$ and $\left[(\mathrm{MeO})_{2} \mathrm{Tr}\right] \mathrm{fam}{ }^{6} N^{7} \mathrm{G}_{\mathrm{d}}[6]$, following the regular protocols of the DNA synthesizer for 3'-(hydrogen phosphonates) and 3'-phosphoramidites [26] [27]. The crude oligonucleotides were purified and detritylated on an oligonucleotide-purification cartridge from Applied Biosystems following the standard protocols. Selected data of the modified oligonucleotides are shown in Table 9.

Table 9. Selected Data of Modified Oligonucleotides

	$\mathbf{1 7}$	$\mathbf{2 4}$	$\mathbf{3 0}$	$\mathbf{3 2}$
Retention time $\left.[\mathrm{min}]^{\mathrm{a}}\right)$	29.5	28.4	26.2	26.5
Yield $[\%]^{\mathrm{b}}$)	20	10	43	45
m / z calc.	3613.9	3638.9	3722.5	3646.5
m / z found	3612.9	3637.9	3725.7	3648.7

${ }^{\text {a }}$) The retention times refer to gradient I.
${ }^{\text {b }}$) The yields were calculated on the basis of silica-gel-bound nucleosides.

REFERENCES

[1] F. Seela, K. Kaiser, Helv. Chim. Acta 1988, 71, 1813.
[2] F. Seela, H. Winter, '10th International Roundtable 1992', Park City, USA.
[3] F. Seela, H. Winter, Bioorg. Med. Chem. Lett. 1993, 3, 273.
[4] F. Seela, H. Winter, Hetv. Chim. Acta 1994, 77, 597.
[5] I. Radhakrishnan, D. J. Patel, E. S. Priestley, H. M. Nash, P. B. Dervan, Biochemistry 1993, 32, 11228.
[6] F. Seela, P. Leonard, Helv. Chim. Acta 1996, 79, 477.
[7] J. Hunziker, E. S. Priestley, H. Brunar, P. B. Dervan, J. Am. Chem. Soc. 1995, 117, 2661.
[8] H. Brunar, P. B. Dervan, Nucleic Acids Res. 1996, 24, 1987.
[9] M. Hoffer, Chem. Ber. 1960, 93, 2777.
[10] F. Seeia, H. Winter, Nucleosides Nucleotides 1995, 14, 129.
[11] D. M. Brown, P. Kong Thoo Lin, Carbohydr. Res. 1991, 216, 129.
[12] W. A. Nasutavicus, J. Love, J. Heterocycl. Chem. 1974, 11, 77.
[13] R. W. Balsiger, J. A. Montgomery, J. Org. Chem. 1960, 25, 1573.
[14] J. Kjellberg, N. G. Johansson, Nucleosides Nucleotides 1989, 8, 225.
[15] F. Seela, B. Westermann, U. Bindig, J. Chem. Soc., Perkin Trans. 1 1988, 697.
[16] H.-D. Winkeler, F. Seela, J. Org. Chem. 1983, 48, 3119.
[17] J. Kjellberg, M. Liljenberg, N. G. Johansson, Tetrahedron Lett. 1986, $27,877$.
[18] B. L. Gaffney, R. A. Jones, Tetrahedron Lett. 1982, 23, 2253.
[19] H. C. P. F. Roelen, H. F. Brugghe, H. van den Elst, J. C. Klein, G. A. van der Marel, J. H. van Boom, Recl. Trav. Chim. Pays-Bas 1992, 111, 227.
[20] H. Borowy-Borowski, R. W. Chambers, Biochemistry 1987, 26, 2465.
[21] T. S. Rao, R. H. Durland, G. R. Revankar, J. Heterocycl. Chem. 1994, 31, 935.
[22] F. Seela, H. Driller, Nucleosides Nucleotides 1989, 8, 1.
[23] F. Seela, W. Bussmann, Nucleosides Nucleotides 1985, 4, 391.
[24] H. Rosemeyer, G. Toth, B. Golankiewicz, Z. Kazimierczuk, W. Bourgeois, U. Kretschmer, H.-P. Muth, F. Seela, J. Am. Chem. Soc. 1990, 55, 5784.
[25] J. van Wijk, C. Altona, PSEUROT 6.0 - A Program for the Conformational Analysis of Five Membered Rings, University of Leiden, July, 1993.
[26] Applied Biosystems, 'Users Manual of the DNA synthesizer' 380 B, p. 6.
[27] B. C. Froehler, in 'Protocols for Oligonucleotides and Analogs', in 'Methods in Molecular Biology', Ed. E. S. Agrawal, Humana Press, Totowa, N. J., 1993, Vol. 20. p. 63.
[28] F. Seela, S. Lampe, Helv. Chim. Acta 1991, 74, 1790.
[29] B. L. Gaffney, L. A. Marky, R. A. Jones, Biochemistry 1984, 23, 5686.
[30] P. F. Schendel, P. E. Robins, Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 6017.
[31] J. Cairns, Nature (London) 1981, 289, 353.
[32] F. Seela, H. Driller, Nucleic Acids Res. 1985, 13, 911.
[33] C. Thibaudeau, J. Plavec, J. Chattopadhyaya, J. Am. Chem. Soc. 1994, 116, 8033.

[^0]: ${ }^{\text {a }}$) Spectra were measured in $\left(\mathrm{D}_{6}\right)$ DMSO rel. to SiMe_{4} at 23°. ${ }^{\text {b }}$) From $\left[{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right]$ gated-decoupled spectra.
 ${ }^{c}$) Purine numbering. ${ }^{d}$) Tentative. ${ }^{\text {c }}$) Superimposed by DMSO.

[^1]: ${ }^{\text {a }}$) From ${ }^{13} \mathrm{C}$-NMR spectra measured in (D_{6}) DMSO at 23°.
 ${ }^{\text {b }}$) Purine numbering.

